Powerful stellar winds and supernova explosions with intense energy release in the form of strong shock waves can convert a sizeable part of the kinetic energy release into energetic particles. The starforming regions are argued as a favorable site of energetic particle acceleration and could be efficient sources of nonthermal emission. We present here a non-linear time-dependent model of particle acceleration in the vicinity of two closely approaching fast magnetohydrodynamic (MHD) shocks. Such MHD flows are expected to occur in rich young stellar cluster where a supernova is exploding in the vicinity of a strong stellar wind of a nearby massive star. We find that the spectrum of the high energy particles accelerated at the stage of two closely approaching shocks can be harder than that formed at a forward shock of an isolated supernova remnant. The presented method can be applied to model particle acceleration in a variety of systems with colliding MHD flows.
We model the diffusive shock acceleration of particles in a system of two colliding shock waves and present a method to solve the time-dependent problem analytically in the test-particle approximation and high energy limit. In particular, we show that in this limit the problem can be analysed with the help of a self-similar solution. While a number of recent works predict hard ($E^{-1}$) spectra for the accelerated particles in the stationary limit, or the appearance of spectral breaks, we found instead that the spectrum of accelerated particles in a time-dependent collision follows quite closely the canonical $E^{-2}$ prediction of diffusive shock acceleration at a single shock, except at the highest energy, where a hardening appears, originating a bumpy feature just before the exponential cutoff. We also investigated the effect of the reacceleration of pre-existing cosmic rays by a system of two shocks, and found that under certain conditions spectral features can appear in the cutoff region. Finally, the mathematical methods presented here are very general and could be easily applied to a variety of astrophysical situations, including for instance standing shocks in accretion flows, diverging shocks, backward collisions of a slow shock by a faster shock, and wind-wind or shock-wind collisions.
We present a model for the non-thermal emission from a colliding-wind binary. Relativistic protons and electrons are assumed to be accelerated through diffusive shock acceleration (DSA) at the global shocks bounding the wind-wind collision region. The non-linear effects of the back-reaction due to the cosmic ray pressure on the particle acceleration process and the cooling of the non-thermal particles as they flow downstream from the shocks are included. We explore how the non-thermal particle distribution and the keV-GeV emission changes with the stellar separation and the viewing angle of the system, and with the momentum ratio of the winds. We confirm earlier findings that DSA is very efficient when magnetic field amplification is not included, leading to significantly modified shocks. We also find that the non-thermal flux scales with the binary separation in a complicated way and that the anisotropic inverse Compton emission shows only a moderate variation with viewing angle due to the spatial extent of the wind-wind collision.
We present a model for the creation of non-thermal particles via diffusive shock acceleration in a colliding-wind binary. Our model accounts for the oblique nature of the global shocks bounding the wind-wind collision region and the finite velocity of the scattering centres to the gas. It also includes magnetic field amplification by the cosmic ray induced streaming instability and the dynamical back reaction of the amplified field. We assume that the injection of the ions and electrons is independent of the shock obliquity and that the scattering centres move relative to the fluid at the Alfv{e}n velocity (resulting in steeper non-thermal particle distributions). We find that the Mach number, Alfv{e}nic Mach number, and transverse field strength vary strongly along and between the shocks, resulting in significant and non-linear variations in the particle acceleration efficiency and shock nature (turbulent vs. non-turbulent). We find much reduced compression ratios at the oblique shocks in most of our models compared to our earlier work, though total gas compression ratios that exceed 20 can still be obtained in certain situations. We also investigate the dependence of the non-thermal emission on the stellar separation and determine when emission from secondary electrons becomes important. We finish by applying our model to WR 146, one of the brightest colliding wind binaries in the radio band. We are able to match the observed radio emission and find that roughly 30 per cent of the wind power at the shocks is channelled into non-thermal particles.
Cosmic-ray acceleration has been a long-standing mystery and despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful shocks, which have been expected to produce high-energy cosmic-rays through Fermi acceleration at the shock interface. The accelerated particles should collide with stellar photons or ambient material, producing non-thermal emission observable in X-rays and gamma-rays. The supermassive binary star eta Carinae drives the strongest colliding wind shock in the solar neighborhood. Observations with non-focusing high-energy observatories indicate a high energy source near eta Carinae, but have been unable to conclusively identify eta Carinae as the source because of their relatively poor angular resolution. Here we present the first direct focussing observations of the non-thermal source in the extremely hard X-ray band, which is found to be spatially coincident with the star within several arc-seconds. These observations show that the source of non-thermal X-rays varies with the orbital phase of the binary, and that the photon index of the emission is similar to that derived through analysis of the gamma-ray spectrum. This is conclusive evidence that the high-energy emission indeed originates from non-thermal particles accelerated at colliding wind shocks.
Non-thermal emission has been detected in WR-stars for many years at long wavelengths spectral range, in general attributed to synchrotron emission. Two key ingredients are needed to explain such emissions, namely magnetic fields and relativistic particles. Particles can be accelerated to relativistic speeds by Fermi processes at strong shocks. Therefore, strong synchrotron emission is usually attributed to WR binarity. The magnetic field may also be amplified at shocks, however the actual picture of the magnetic field geometry, intensity, and its role on the acceleration of particles at WR binary systems is still unclear. In this work we discuss the recent developments in MHD modelling of wind-wind collision regions by means of numerical simulations, and the coupled particle acceleration processes related.