Most recent PHENIX results on electromagnetic probes are presented including first preliminary results obtained with the Hadron Blind Detector (HBD) on e+e- invariant mass spectra from Au+Au collisions at sqrt(s_NN) = 200 GeV.
Results on low-mass dileptons, covering the very broad energy range from the BEVALAC up to SPS are reviewed. The emphasis is on the open questions raised by the intriguing results obtained so far and the prospects for addressing them in the near future with the second generation of experiments, in particular HADES, NA60 and PHENIX.
The PHENIX Experiment at the Relativistic Heavy Ion Collider has made measurements of event-by-event fluctuations in the net charge, the mean transverse momentum, and the charged particle multiplicity as a function of collision energy, centrality, and transverse momentum in heavy ion collisions. The results of these measurements will be reviewed and discussed.
The production of the low-mass dielectrons is considered to be a powerful tool to study the properties of the hot and dense matter created in the ultra-relativistic heavy-ion collisions. We present the preliminary results on the first measurements of the low-mass dielectron continuum in Au+Au collisions and the phi meson production measured in Au+Au and d+Au collisions at sqrt{s_NN} = 200 GeV performed by the PHENIX experiment.
The first results from Au-Au collisions at $sqrt{s_{NN}}$=130 GeV obtained with the PHENIX detector in the Year 2000 run at RHIC are presented. The mid-rapidity charged particle multiplicity and transverse energy per participating nucleon rise steadily with the number of participants, such that transverse energy per charged particle remains relatively constant as a function of centrality. Identified charged hadron spectra as well as $bar{p}/p$ and $K^+/K^-$ ratios are discussed. Charged particle and neutral pion transverse momentum distributions in peripheral nuclear collisions are consistent with point-like scaling. The spectra at high $p_t$ from central collisions are significantly suppressed when compared to a simple superposition of binary nucleon-nucleon collisions.
The NA60 experiment at the CERN SPS has studied dimuon production in 158 AGeV In-In collisions. The strong pair excess above the known sources found in the mass region $0.2<M<2.5$ GeV has been previously interpreted as thermal radiation. In this paper results on the associated angular distributions for $M<1$ GeV, as measured in the Collins-Soper reference frame, are presented. The structure function parameters $lambda$, $mu$, $ u$ are consistent with zero and the projected polar and azimuth angle distributions are uniform. The absence of any polarization is consistent with the interpretation of the excess dimuons as thermal radiation from a randomized system.