Do you want to publish a course? Click here

High-magnetic field lattice length changes in URu2Si2

145   0   0.0 ( 0 )
 Added by V\\'ictor Correa
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report high magnetic field (up to 45 T) c-axis thermal expansion and magnetostriction experiments on URu2Si2 single crystals. The sample length change associated with the transition to the hidden order phase becomes increasingly discontinous as the magnetic field is raised above 25 T. The re-entrant ordered phase III is clearly observed in both the thermal expansion and magnetostriction above 36 T, in good agreement with previous results. The sample length is also discontinuous at the boundaries of this phase, mainly at the upper boundary. A change in the sign of the coefficient of thermal-expansion is observed at the metamagnetic transition (B_M = 38 T) which is likely related to the existence of a quantum critical end point.



rate research

Read More

We present measurements of the magnetoresistivity RHOxx of URu2Si2 single crystals in high magnetic fields up to 60 T and at temperatures from 1.4 K to 40 K. Different orientations of the magnetic field have been investigated permitting to follow the dependence on Q of all magnetic phase transitions and crossovers, where Q is the angle between the magnetic field and the easy-axis c. We find out that all magnetic transitions and crossovers follow a simple 1/cos(Q) -law, indicating that they are controlled by the projection of the field on the c-axis.
We have measured the elastic constant (C11-C12)/2 in URu2Si2 by means of high-frequency ultrasonic measurements in pulsed magnetic fields H || [001] up to 61.8 T in a wide temperature range from 1.5 to 116 K. We found a reduction of (C11-C12)/2 that appears only in the temperature and magnetic field region in which URu2Si2 exhibits a heavy-electron state and hidden-order. This change in (C11-C12)/2 appears to be a response of the 5f-electrons to an orthorhombic and volume conservative strain field epsilon_xx-epsilon_yy with {Gamma}3-symmetry. This lattice instability is likely related to a symmetry-breaking band instability that arises due to the hybridization of the localized f electrons with the conduction electrons, and is probably linked to the hidden-order parameter of this compound.
458 - E Hassinger , D Aoki , F Bourdarot 2009
We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measure at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field $H$ can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.
We performed the Shubnikov-de Haas (SdH) experiments of the low carrier heavy fermion compound URu2Si2 at high fields up to 34T and at low temperatures down to 30mK. All main SdH branches named alpha, beta and gamma were observed for all the measured field-directions (H // [001] -> [100], [100] -> [110] and [001] -> [110]), indicating that these are attributed to the closed Fermi surfaces with nearly spherical shapes. Anomalous split of branch alpha was detected for the field along the basal plane, and the split immediately disappears by tilting the field to [001] direction, implying a fingerprint of the hidden order state. High field experiments reveal the complicated field-dependence of the SdH frequencies and the cyclotron masses due to the Zeeman spin-splitting associated with the Fermi surface reconstruction in the hidden order state with small carrier numbers. A new SdH branch named omega with large cyclotron mass of 25m0 was detected at high fields above 23T close to the hidden order instabilities.
We present a detailed study of the low temperature and high magnetic field phases in the chemical substitution series URu$_2$Si$_{2-x}$P$_x$ using electrical transport and magnetization in pulsed magnetic fields up to 65T. Within the hidden order region (0 $ x$$ $ 0.035) the high field ordering is robust even as the hidden order temperature is suppressed. Earlier work shows that for 0.035 $ x$ $ $ 0.26 there is a Kondo lattice with a no-ordered state that is replaced by antiferromagnetism for 0.26 $ x$ 0.5. We observe a simplified continuation of the high field ordering in the no-order $x$-region and an enhancement of the high field state upon the destruction of the antiferromagnetism with magnetic field. These results closely resemble what is seen for URu$_{2-x}$Rh$_x$Si$_2$footnote{The concentration in this paper is defined as URu$_{2-x}$Rh$_x$Si$_2$ while the chemical formula in the literature is given as U(Ru$_{1-x}$Rh$_x$)$_2$Si$_2$ [24-26]}, from which we infer that charge tuning uniformly controls the ground state of URu$_2$Si$_2$, regardless of whether s/p or d-electrons are replaced. This provides guidance for determining the specific factors that lead to hidden order versus magnetism in this family of materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا