Do you want to publish a course? Click here

The role of band filling in tuning the high field phases of URu2Si2

213   0   0.0 ( 0 )
 Added by Mark Wartenbe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed study of the low temperature and high magnetic field phases in the chemical substitution series URu$_2$Si$_{2-x}$P$_x$ using electrical transport and magnetization in pulsed magnetic fields up to 65T. Within the hidden order region (0 $ x$$ $ 0.035) the high field ordering is robust even as the hidden order temperature is suppressed. Earlier work shows that for 0.035 $ x$ $ $ 0.26 there is a Kondo lattice with a no-ordered state that is replaced by antiferromagnetism for 0.26 $ x$ 0.5. We observe a simplified continuation of the high field ordering in the no-order $x$-region and an enhancement of the high field state upon the destruction of the antiferromagnetism with magnetic field. These results closely resemble what is seen for URu$_{2-x}$Rh$_x$Si$_2$footnote{The concentration in this paper is defined as URu$_{2-x}$Rh$_x$Si$_2$ while the chemical formula in the literature is given as U(Ru$_{1-x}$Rh$_x$)$_2$Si$_2$ [24-26]}, from which we infer that charge tuning uniformly controls the ground state of URu$_2$Si$_2$, regardless of whether s/p or d-electrons are replaced. This provides guidance for determining the specific factors that lead to hidden order versus magnetism in this family of materials.



rate research

Read More

We present measurements of the magnetoresistivity RHOxx of URu2Si2 single crystals in high magnetic fields up to 60 T and at temperatures from 1.4 K to 40 K. Different orientations of the magnetic field have been investigated permitting to follow the dependence on Q of all magnetic phase transitions and crossovers, where Q is the angle between the magnetic field and the easy-axis c. We find out that all magnetic transitions and crossovers follow a simple 1/cos(Q) -law, indicating that they are controlled by the projection of the field on the c-axis.
We report high magnetic field (up to 45 T) c-axis thermal expansion and magnetostriction experiments on URu2Si2 single crystals. The sample length change associated with the transition to the hidden order phase becomes increasingly discontinous as the magnetic field is raised above 25 T. The re-entrant ordered phase III is clearly observed in both the thermal expansion and magnetostriction above 36 T, in good agreement with previous results. The sample length is also discontinuous at the boundaries of this phase, mainly at the upper boundary. A change in the sign of the coefficient of thermal-expansion is observed at the metamagnetic transition (B_M = 38 T) which is likely related to the existence of a quantum critical end point.
165 - M. Yoshida , K. Nawa , H. Ishikawa 2016
We report single-crystal 51V NMR studies on volborthite Cu3V2O7(OH)2 2H2O, which is regarded as a quasi-two-dimensional frustrated magnet with competing ferromagnetic and antiferromagnetic interactions. In the 1/3 magnetization plateau above 28 T, the nuclear spin-lattice relaxation rate 1/T1 indicates an excitation gap with a large effective g factor in the range of 4.6-5.9, pointing to magnon bound states. Below 26 T where the gap has closed, the NMR spectra indicate small internal fields with a Gaussian-like distribution, whereas 1/T1 shows a power-law-like temperature dependence in the paramagnetic state, which resembles a slowing down of spin fluctuations associated with magnetic order. We discuss the possibility of an exotic spin state caused by the condensation of magnon bound states below the magnetization plateau.
We performed the Shubnikov-de Haas (SdH) experiments of the low carrier heavy fermion compound URu2Si2 at high fields up to 34T and at low temperatures down to 30mK. All main SdH branches named alpha, beta and gamma were observed for all the measured field-directions (H // [001] -> [100], [100] -> [110] and [001] -> [110]), indicating that these are attributed to the closed Fermi surfaces with nearly spherical shapes. Anomalous split of branch alpha was detected for the field along the basal plane, and the split immediately disappears by tilting the field to [001] direction, implying a fingerprint of the hidden order state. High field experiments reveal the complicated field-dependence of the SdH frequencies and the cyclotron masses due to the Zeeman spin-splitting associated with the Fermi surface reconstruction in the hidden order state with small carrier numbers. A new SdH branch named omega with large cyclotron mass of 25m0 was detected at high fields above 23T close to the hidden order instabilities.
Electronic properties of the sodium cobaltate NaxCoO2 are systematically studied through a precise control of band filling. Resistivity, magnetic susceptibility and specific heat measurements are carried out on a series of high-quality polycrystalline samples prepared at 200 C with Na content in a wide range of 0.35 =< x =< 0.70. It is found that dramatic changes in electronic properties take place at a critical Na concentration x* that lies between 0.58 and 0.59, which separates a Pauli paramagnetic and a Curie-Weiss metals. It is suggested that at x* the Fermi level touches the bottom of the a1g band at the gamma point, leading to a crucial change in the density of states across x* and the emergence of a small electron pocket around the gamma point for x > x*.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا