Do you want to publish a course? Click here

A Search for Giant Planet Companions to T Tauri Stars

406   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from an ongoing multiwavelength radial velocity (RV) survey of the Taurus-Auriga star forming region as part of our effort to identify pre--main sequence giant planet hosts. These 1-3 Myr old T Tauri stars present significant challenges to traditional RV surveys. The presence of strong magnetic fields gives rise to large, cool star spots. These spots introduce significant RV jitter which can mimic the velocity modulation from a planet-mass companion. To distinguish between spot-induced and planet-induced RV modulation, we conduct observations at ~6700 Angstroms and ~2.3 microns and measure the wavelength dependence (if any) in the RV amplitude. CSHELL observations of the known exoplanet host Gl 86 demonstrate our ability to detect not only hot Jupiters in the near infrared but also secular trends from more distant companions. Observations of nine very young stars reveal a typical reduction in RV amplitude at the longer wavelengths by a factor of ~2-3. While we can not confirm the presence of planets in this sample, three targets show different periodicities in the two wavelength regions. This suggests different physical mechanisms underlying the optical and K band variability.



rate research

Read More

We report a new giant planet orbiting the K giant HD 155233, as well as four stellar-mass companions from the Pan-Pacific Planet Search, a southern hemisphere radial velocity survey for planets orbiting nearby giants and subgiants. We also present updated velocities and a refined orbit for HD 47205b (7 CMa b), the first planet discovered by this survey. HD 155233b has a period of 885$pm$63 days, eccentricity e=0.03$pm$0.20, and m sin i=2.0$pm$0.5 M_jup. The stellar-mass companions range in m sin i from 0.066 M_sun to 0.33 M_sun. Whilst HD 104358B falls slightly below the traditional 0.08 M_sun hydrogen-burning mass limit, and is hence a brown dwarf candidate, we estimate only a 50% a priori probability of a truly substellar mass.
We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.
This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.
We propose a method to search for stellar-mass black hole (BH) candidates with giant companions from spectroscopic observations. Based on the stellar spectra of LAMOST Data Release 6, we obtain a sample of seven giants in binaries with large radial velocity variation $Delta V_R > 80~{rm km~s^{-1}}$. With the effective temperature, surface gravity, and metallicity provided by LAMOST, and the parallax given by {it Gaia}, we can estimate the mass and radius of the giant, and therefore evaluate the possible mass of the optically invisible star in the binary. We show that the sources in our sample are potential BH candidates, and are worthy of dynamical measurement by further spectroscopic observations. Our method may be particularly valid for the selection of BH candidates in binaries with unknown orbital periods.
In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M_Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51 +/- 10% for companions with masses between 1-13 M_Jup and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا