Do you want to publish a course? Click here

The Pan-Pacific Planet Search III: Five companions orbiting giant stars

64   0   0.0 ( 0 )
 Added by Robert Wittenmyer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a new giant planet orbiting the K giant HD 155233, as well as four stellar-mass companions from the Pan-Pacific Planet Search, a southern hemisphere radial velocity survey for planets orbiting nearby giants and subgiants. We also present updated velocities and a refined orbit for HD 47205b (7 CMa b), the first planet discovered by this survey. HD 155233b has a period of 885$pm$63 days, eccentricity e=0.03$pm$0.20, and m sin i=2.0$pm$0.5 M_jup. The stellar-mass companions range in m sin i from 0.066 M_sun to 0.33 M_sun. Whilst HD 104358B falls slightly below the traditional 0.08 M_sun hydrogen-burning mass limit, and is hence a brown dwarf candidate, we estimate only a 50% a priori probability of a truly substellar mass.

rate research

Read More

We report the detection of two new planets orbiting the K giants HD 86950 and HD 222076, based on precise radial velocities obtained with three instruments: AAT/UCLES, FEROS, and CHIRON. HD 86950b has a period of 1270$pm$57 days at $a=2.72pm$0.08 AU, and m sin $i=3.6pm$0.7 Mjup. HD 222076b has $P=871pm$19 days at $a=1.83pm$0.03 AU, and m sin $i=1.56pm$0.11 Mjup. These two giant planets are typical of the population of planets known to orbit evolved stars. In addition, we find a high-amplitude periodic velocity signal ($Ksim$50 m/s) in HD 29399, and show that it is due to stellar variability rather than Keplerian reflex motion. We also investigate the relation between planet occurrence and host-star metallicity for the 164-star Pan-Pacific Planet Search sample of evolved stars. In spite of the small sample of PPPS detections, we confirm the trend of increasing planet occurrence as a function of metallicity found by other studies of planets orbiting evolved stars.
We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60pm$0.02 AU and $a_c=2.24pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96pm$0.12 Mjup and $M_c=1.76pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.
We present results from an ongoing multiwavelength radial velocity (RV) survey of the Taurus-Auriga star forming region as part of our effort to identify pre--main sequence giant planet hosts. These 1-3 Myr old T Tauri stars present significant challenges to traditional RV surveys. The presence of strong magnetic fields gives rise to large, cool star spots. These spots introduce significant RV jitter which can mimic the velocity modulation from a planet-mass companion. To distinguish between spot-induced and planet-induced RV modulation, we conduct observations at ~6700 Angstroms and ~2.3 microns and measure the wavelength dependence (if any) in the RV amplitude. CSHELL observations of the known exoplanet host Gl 86 demonstrate our ability to detect not only hot Jupiters in the near infrared but also secular trends from more distant companions. Observations of nine very young stars reveal a typical reduction in RV amplitude at the longer wavelengths by a factor of ~2-3. While we can not confirm the presence of planets in this sample, three targets show different periodicities in the two wavelength regions. This suggests different physical mechanisms underlying the optical and K band variability.
Precise radial velocities from the Anglo-Australian Telescope confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P=89.1+/-0.1 days, and m sin i=1.35+/-0.17 Mjup. These data also confirm the planetary nature of the outer companion, with m sin i=3.9+/-0.6 Mjup and a=2.96+/-0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.
Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semi-major axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H]<0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g. stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا