Do you want to publish a course? Click here

Giant Molecular Clouds and Star Formation in the Tidal Molecular Arm of NGC 4039

143   0   0.0 ( 0 )
 Added by Daniel Espada
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of tidally induced arms provide a means to study molecular cloud formation and the subsequent star formation under environmental conditions which in principle are different from quasi stationary spiral arms. We report the properties of a newly discovered molecular gas arm of likely tidal origin at the south of NGC 4039 and the overlap region in the Antennae galaxies, with a resolution of 168 x 085, using the Atacama Large Millimeter/submillimeter Array science verification CO(2-1) data. The arm extends 3.4 kpc (34) and is characterized by widths of ~ 200 pc (2) and velocity widths of typically DeltaV ~ 10-20 km/s . About 10 clumps are strung out along this structure, most of them unresolved, with average surface densities of Sigma_gas ~ 10-100 Msun pc^{-2}, and masses of (1-8) x 10^6 Msun. These structures resemble the morphology of beads on a string, with an almost equidistant separation between the beads of about 350 pc, which may represent a characteristic separation scale for giant molecular associations. We find that the star formation efficiency at a resolution of 6 (600 pc) is in general a factor of 10 higher than in disk galaxies and other tidal arms and bridges. This arm is linked, based on the distribution and kinematics, to the base of the western spiral arm of NGC 4039, but its morphology is different to that predicted by high-resolution simulations of the Antennae galaxies.



rate research

Read More

238 - J. Koda 2012
We report systematic variations in the CO(2-1)/CO(1-0) line ratio (R) in M51. The ratio shows clear evidence for the evolution of molecular gas from the upstream interarm regions, passage into the spiral arms and back into the downstream interarm regions. In the interarm regions, R is typically low <0.7 (and often 0.4-0.6); this is similar to the ratios observed in Galactic giant molecular clouds (GMCs) with low far-IR luminosities. However, the ratio rises to >0.7 (often 0.8-1.0) in the spiral arms, particularly at their leading (downstream) edge. R is also high, 0.8-1.0, in the central region. An LVG calculation provides insight into the changes in the gas physical conditions between the arm and interarm regions: cold and low density gas (~10K, ~300cm-3) is required for the interarm GMCs, but this gas must become warmer and/or denser in the more active star forming spiral arms. R is higher in areas of high 24micron brightness (an approximate tracer of star formation rate surface density) and high CO(1-0) integrated intensity (a well-calibrated tracer of total molecular gas surface density). The systematic enhancement of the CO(2-1) line relative to CO(1-0) in luminous star forming regions suggests that some caution is needed when using CO(2-1) as a tracer of bulk molecular gas mass.
The under-abundance of very massive galaxies in the universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable most of the expelled mass is likely in cooler atomic and molecular phases. Expanding molecular shells observed in starburst systems such as NGC 253 and M 82 may facilitate the entrainment of molecular gas in the wind. While shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution <100 pc coupled with sensitivity to a wide range of spatial scales, hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (D~3.4 Mpc) known to possess a wind, which trace the cool molecular wind at 50 pc resolution. At this resolution the extraplanar molecular gas closely tracks the H{alpha} filaments, and it appears connected to molecular expanding shells located in the starburst region. These observations allow us to directly measure the molecular outflow rate to be > 3 Msun/yr and likely ~9 Msun/yr. This implies a ratio of mass-outflow rate to star formation rate of at least {eta}~1-3, establishing the importance of the starburst-driven wind in limiting the star formation activity and the final stellar content.
We present a novel infrared spectral energy distribution (SED) modeling methodology that uses likelihood-based weighting of the model fitting results to construct probabilistic H-R diagrams (pHRD) for X-ray identified, intermediate-mass (2-8 $M_{odot}$), pre-main sequence young stellar populations. This methodology is designed specifically for application to young stellar populations suffering strong, differential extinction ($Delta A_V > 10$ mag), typical of Galactic massive star-forming regions. We pilot this technique in the Carina Nebula Complex (CNC) by modeling the 1-8 $mu$m SEDs of 2269 likely stellar members that exhibit no excess emission from circumstellar dust disks at 4.5 $mu$m or shorter wavelengths. A subset of ${sim}100$ intermediate-mass stars in the lightly-obscured Trumpler 14 and 16 clusters have available spectroscopic $T_{rm eff}$, measured from the Gaia-ESO survey. We correctly identify the stellar temperature in 70% of cases, and the aggregate pHRD for all sources returns the same peak in the stellar age distribution as obtained using the spectroscopic $T_{rm eff}$. The SED model parameter distributions of stellar mass and evolutionary age reveal significant variation in the duration of star formation among four large-scale stellar overdensities within the CNC and a large distributed stellar population. Star formation began ${sim}10$ Myr ago and continues to the present day, with the star formation rate peaking ${<}3$ Myr ago when the massive Trumpler 14 and 16 clusters formed. We make public the set of 100,000 SED models generated from standard pre-main sequence evolutionary tracks and our custom software package for generating pHRDs and mass-age distributions from the SED fitting results.
143 - N. Imara , F. Bigiel , L. Blitz 2011
We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (HI) with which they are associated. High-resolution VLA observations are used to measure the properties of HI in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high-surface density atomic gas. The mean HI surface density in the vicinity of GMCs is 10 M_sol/pc^2 and tends to increase with GMC mass as Sigma_HI ~ M_GMC^0.27. 39 of the 45 HI regions surrounding GMCs have linear velocity gradients of ~0.05 km/s/pc. If the linear gradients previously observed in the GMCs result from rotation, then 53% are counterrotating with respect to the local HI. If the linear gradients in these local HI regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km/s/pc, suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of $-1.35$ when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا