Do you want to publish a course? Click here

Application of magnetically induced hyperthermia on the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

86   0   0.0 ( 0 )
 Added by Gerardo F. Goya
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic hyperthermia is currently an EU-approved clinical therapy against tumor cells that uses magnetic nanoparticles under a time varying magnetic field (TVMF). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, since therapeutic drugs available display severe side effects and drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe_{3}O_{4} magnetic nanoparticles (MNPs) in order to remotely provoke cell death using TVMFs. The MNPs with average sizes of d approx. 30 nm were synthesized using a precipitation of FeSO_{4}4 in basic medium. The MNPs were added to Crithidia fasciculata choanomastigotes in exponential phase and incubated overnight. The amount of uploaded MNPs per cell was determined by magnetic measurements. Cell viability using the MTT colorimetric assay and flow cytometry showed that the MNPs were incorporated by the cells with no noticeable cell-toxicity effects. When a TVMF (f = 249 kHz, H = 13 kA/m) was applied to MNP-bearing cells, massive cell death was induced via a non-apoptotic mechanism. No effects were observed by applying a TVMF on control (without loaded MNPs) cells. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Scanning Electron Microscopy showed morphological changes after TVMF experiments. These data indicate (as a proof of principle) that intracellular hyperthermia is a suitable technology to induce the specific death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies that combat parasitic infections.



rate research

Read More

The vertex model is a popular framework for modelling tightly packed biological cells, such as confluent epithelia. Cells are described by convex polygons tiling the plane and their equilibrium is found by minimizing a global mechanical energy, with vertex locations treated as degrees of freedom. Drawing on analogies with granular materials, we describe the force network for a localized monolayer and derive the corresponding discrete Airy stress function, expressed for each $N$-sided cell as $N$ scalars defined over kites covering the cell. We show how a torque balance (commonly overlooked in implementations of the vertex model) requires each internal vertex to lie at the orthocentre of the triangle formed by neighbouring edge centroids. Torque balance also places a geometric constraint on the stress in the neighbourhood of cellular trijunctions, and requires cell edges to be orthogonal to the links of a dual network that connect neighbouring cell centres and thereby triangulate the monolayer. We show how the Airy stress function depends on cell shape when a standard energy functional is adopted, and discuss implications for computational implementations of the model.
The use of engineered nanoscale magnetic materials in healthcare and biomedical technologies is rapidly growing. Two examples which have recently attracted significant attention are magnetic particle imaging (MPI) for biological monitoring, and magnetic field hyperthermia (MFH) for cancer therapy. Here for the first time, the capability of a Lissajous scanning MPI device to act as a standalone platform to support the application of MFH cancer treatment is presented. The platform is shown to offer functionalities for nanoparticle localization, focused hyperthermia therapy application, and non-invasive tissue thermometry in one device. Combined, these capabilities have the potential to significantly enhance the accuracy, effectiveness and safety of MFH therapy. Measurements of nanoparticle hyperthermia during protracted exposure to the MPI scanners 3D imaging field sequence revealed spatially focused heating, with a maximum that is significantly enhanced compared with a simple 1-dimensional sinusoidal excitation. The observed spatial heating behavior is qualitatively described based on a phenomenological model considering torques exerted in the Brownian regime. In-vitro cell studies using a human acute monocytic leukemia cell line (THP-1) demonstrated strong suppression of both structural integrity and metabolic activity within 24 h following a 40 min MFH treatment actuated within the Lissajous MPI scanner. Furthermore, reconstructed MPI images of the nanoparticles distributed among the cells, and the temperature-sensitivity of the MPI imaging signal obtained during treatment are demonstrated. In summary, combined Lissajous MPI and MFH technologies are presented; demonstrating for the first time their potential for cancer treatment with maximum effectiveness, and minimal collateral damage to surrounding tissues.
The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions affected by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also impact on our understanding of antibiotic drug action in bacteria.
Understanding the coordination of cell division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular-scale are challenging due to the limited availability of biocompatible temperature sensors as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in-vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two cell stage. Our data suggest that the cell cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell division timings as a consequence of local perturbations.
We perform a spatially resolved simulation study of an AND gate based on DNA strand displacement using several lengths of the toehold and the adjacent domains. DNA strands are modelled using a coarse-grained dynamic bonding model {[}C. Svaneborg, Comp. Phys. Comm. 183, 1793 (2012){]}. We observe a complex transition path from the initial state to the final state of the AND gate. This path is strongly influenced by non-ideal effects due to transient bubbles revealing undesired toeholds and thermal melting of whole strands. We have also characterized the bound and unbound kinetics of single strands, and in particular the kinetics of the total AND operation and the three distinct distinct DNA transitions that it is based on. We observe a exponential kinetic dependence on the toehold length of the competitive displacement operation, but that the gate operation time is only weakly dependent on both the toehold and adjacent domain length. Our gate displays excellent logical fidelity in three input states, and quite poor fidelity in the fourth input state. This illustrates how non-ideality can have very selective effects on fidelity. Simulations and detailed analysis such as those presented here provide molecular insights into strand displacement computation, that can be also be expected in chemical implementations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا