No Arabic abstract
We apply the functional renormalization-group (FRG) equation to analyze the nature of the QCD critical point beyond the mean-field approximation by taking into consideration the fact that the soft mode associated with the QCD critical point is a linear combination of fluctuations of the chiral condensate and the quark-number density, rather than the pure chiral fluctuations. We first construct an extended quark-meson model in which a new field corresponding to quark-number density is introduced to the conventional one composed of the chiral fields sigma, pi and the quarks. The fluctuations of the quark-number density as well as the chiral condensate are taken into account by solving the FRG equation which contains sigma and the new field as coupled dynamical variables. It is found that the mixing of the two dynamical variables causes a kind of level repulsion between the curvature masses, which in turn leads to an expansion of the critical region of the QCD critical point, depending on the coupling constants in the model yet to be determined from microscopic theories or hopefully by experiments.
We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.
We present results for in-medium spectral functions obtained within the Functional Renormalization Group framework. The analytic continuation from imaginary to real time is performed in a well-defined way on the level of the flow equations. Based on this recently developed method, results for the sigma and the pion spectral function for the quark-meson model are shown at finite temperature, finite quark-chemical potential and finite spatial momentum. It is shown how these spectral function become degenreate at high temperatures due to the restoration of chiral symmetry. In addition, results for vector- and axial-vector meson spectral functions are shown using a gauged linear sigma model with quarks. The degeneration of the $rho$ and the $a_1$ spectral function as well as the behavior of their pole masses is discussed.
We explore the influence of the current quark mass on observables in the low energy regime of hadronic interactions within a renormalization group analysis of the Nambu-Jona-Lasinio model in its bosonized form. We derive current quark mass expansions for the pion decay constant and the pion mass, and we recover analytically the universal logarithmic dependence. A numerical solution of the renormalization group flow equations enables us to determine effective low energy constants from the model. We find values consistent with the phenomenological estimates used in chiral perturbation theory.
Our recently developed variant of variationnally optimized perturbation (OPT), in particular consistently incorporating renormalization group properties (RGOPT), is adapted to the calculation of the QCD spectral density of the Dirac operator and the related chiral quark condensate $langle bar q q rangle$ in the chiral limit, for $n_f=2$ and $n_f=3$ massless quarks. The results of successive sequences of approximations at two-, three-, and four-loop orders of this modified perturbation, exhibit a remarkable stability. We obtain $langle bar q qrangle^{1/3}_{n_f=2}(2, {rm GeV}) = -(0.833-0.845) barLambda_2 $, and $ langlebar q qrangle^{1/3}_{n_f=3}(2, {rm GeV}) = -(0.814-0.838) barLambda_3 $ where the range spanned by the first and second numbers (respectively four- and three-loop order results) defines our theoretical error, and $barLambda_{n_f}$ is the basic QCD scale in the $overline{MS}$-scheme. We obtain a moderate suppression of the chiral condensate when going from $n_f=2$ to $n_f=3$. We compare these results with some other recent determinations from other nonperturbative methods (mainly lattice and spectral sum rules).
We present a renormalization-group (RG) analysis of dark matter interactions with the standard model, where dark matter is allowed to be a component of an electroweak multiplet, and has a mass at or below the electroweak scale. We consider, in addition to the gauge interactions, the complete set of effective operators for dark matter interactions with the standard model above the weak scale, up to and including mass dimension six. We calculate the RG evolution of these operators from the high scale Lambda down to the weak scale, and perform the matching to the tower of effective theories below the weak scale. We also summarize the RG evolution below the weak scale and the matching to the nonrelativistic nuclear interactions. We present several numerical examples and show that in certain cases the dark matter - nucleus scattering rate can change by orders of magnitude when the electroweak running is included.