Global dynamical behaviors of the competitive Lotka-Volterra system even in 3-dimension are not fully understood. The Lyapunov function can provide us such knowledge once it is constructed. In this paper, we construct explicitly the Lyapunov function in three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-dimensional case; (2) a 3-dimensional model; (3) the model of May-Leonard. The dynamics of these examples include bistable case and cyclical behavior. The first two examples are the generalized gradient system defined in the Appendixes, while the model of May-Leonard is not. Our method is helpful to understand the limit cycle problems in general 3-dimensional case.
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of possible species, which may undergo extinction. How many species survive depends on the properties of the interaction matrix; the size of the resulting food web at stationarity is a property of the system itself in our model, and not a control parameter as in most studies based on random matrix theory. We find that prey-predator relations enhance stability, and that variability of species interactions promotes instability. Complexity of inter-species couplings leads to reduced sizes of ecological communities. Dynamically evolved community size and stability are hence positively correlated.
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorporated in the model through a stochastic resetting dynamics of the predators to the prey patch. We solve in the long time limit the rate equations of Lotka-Volterra type that describe the evolution of the two species densities. Fixing the demographic parameters and the Levy exponent, the total population of predators can be maximized for a certain value of the resetting rate. This optimal value achieves a compromise between over-exploitation and under-utilization of the habitat. Similarly, at fixed resetting rate, there exists a Levy exponent which is optimal regarding predator abundance. These findings are supported by 2D stochastic simulations and show that the combined effects of diffusion and resetting can broadly extend the region of species coexistence in ecosystems facing resources scarcity.
Animals live in groups to defend against predation and to obtain food. However, for some animals --- especially ones that spend long periods of time feeding --- there are costs if a group chooses to move on before their nutritional needs are satisfied. If the conflict between feeding and keeping up with a group becomes too large, it may be advantageous to some animals to split into subgroups of animals with similar nutritional needs. We model the costs and benefits of splitting by a herd of cows using a cost function (CF) that quantifies individual variation in hunger, desire to lie down, and predation risk. We model the costs associated with hunger and lying desire as the standard deviations of individuals within a group, and we model predation risk as an inverse exponential function of group size. We minimize the cost function over all plausible groups that can arise from a given herd and study the dynamics of group splitting. We explore our model using two examples: (1) we consider group switching and group fission in a herd of relatively homogeneous cows; and (2) we examine a herd with an equal number of adult males (larger animals) and adult females (smaller animals).
This work is concerned with the existence of entire solutions of the diffusive Lotka-Volterra competition system begin{equation}label{eq:abstract} begin{cases} u_{t}= u_{xx} + u(1-u-av), & qquad xinmathbb{R} cr v_{t}= d v_{xx}+ rv(1-v-bu), & qquad xinmathbb{R} end{cases} quad (1) end{equation} where $d,r,a$, and $b$ are positive constants with $a eq 1$ and $b eq 1$. We prove the existence of some entire solutions $(u(t,x),v(t,x))$ of $(1)$ corresponding to $(Phi_{c}(xi),0)$ at $t=-infty$ (where $xi=x-ct$ and $Phi_c$ is a traveling wave solution of the scalar Fisher-KPP defined by the first equation of $(1)$ when $a=0$). Moreover, we also describe the asymptotic behavior of these entire solutions as $tto+infty$. We prove existence of new entire solutions for both the weak and strong competition case. In the weak competition case, we prove the existence of a class of entire solutions that forms a 4-dimensional manifold.
This paper deals with coexistence and extinction of time periodic Volterra-Lotka type competing systems with nonlocal dispersal. Such issues have already been studied for time independent systems with nonlocal dispersal and time periodic systems with random dispersal, but have not been studied yet for time periodic systems with nonlocal dispersal. In this paper, the relations between the coefficients representing Malthusian growths, self regulations and competitions of the two species have been obtained which ensure coexistence and extinction for the time periodic Volterra-Lotka type system with nonlocal dispersal. The underlying environment of the Volterra-Lotka type system under consideration has either hostile surroundings, or non-flux boundary, or is spatially periodic.
Ying Tang
,Ruoshi Yuan
,Yian Ma
.
(2012)
.
"Determine dynamical behaviors by the Lyapunov function in competitive Lotka-Volterra systems"
.
Ruoshi Yuan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا