Do you want to publish a course? Click here

Two-Component Coupled KdV Equations and its Connection with the Generalized Harry Dym Equation

110   0   0.0 ( 0 )
 Added by Ziemowit Popowicz
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is shown that, three different Lax operators in the Dym hierarchy, produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component KdV system. The first equation gives us known integrable two-component KdV system while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.



rate research

Read More

98 - Ziemowit Popowicz 2012
It is shown that, two different Lax operators in the Dym hierarchy, produce two generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component KdV system. The first equation gives us new integrable two-component KdV system while the second reduces to the known symmetrical two-component KdV equation. For this new two-component coupled KdV system the Lax representation and Hamiltonian structure is defined.
115 - Lin Deng , Zhenyun Qin 2021
The soliton resolution for the Harry Dym equation is established for initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})$. Combining the nonlinear steepest descent method and $bar{partial}$-derivatives condition, we obtain that when $frac{y}{t}<-epsilon(epsilon>0)$ the long time asymptotic expansion of the solution $q(x,t)$ in any fixed cone begin{equation} Cleft(y_{1}, y_{2}, v_{1}, v_{2}right)=left{(y, t) in R^{2} mid y=y_{0}+v t, y_{0} inleft[y_{1}, y_{2}right], v inleft[v_{1}, v_{2}right]right} end{equation} up to an residual error of order $mathcal{O}(t^{-1})$. The expansion shows the long time asymptotic behavior can be described as an $N(I)$-soliton on discrete spectrum whose parameters are modulated by a sum of localized soliton-soliton interactions as one moves through the cone and the second term coming from soliton-radiation interactionson on continuous spectrum.
In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan (geometrical) equivalence between the M-CVI equation and the two-component Camassa-Holm equation is established. Note that these equations are gauge equivalent each to other.
99 - Jun-xiao Zhao 2010
In the system made of Korteweg-de Vries with one source, we first show by applying the Painleve test that the two components of the source must have the same potential. We then explain the natural introduction of an additional term in the potential of the source equations while preserving the existence of a Lax pair. This allows us to prove the identity between the travelling wave reduction and one of the three integrable cases of the cubic Henon-Heiles Hamiltonian system.
In this paper, we provide the geometric formulation to the two-component Camassa-Holm equation (2-mCHE). We also study the relation between the 2-mCHE and the M-CV equation. We have shown that these equations arise from the invariant space curve flows in three-dimensional Euclidean geometry. Using this approach we have established the geometrical equivalence between the 2-mCHE and the M-CV equation. The gauge equivalence between these equations is also considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا