Do you want to publish a course? Click here

O(N)-Universality Classes and the Mermin-Wagner Theorem

118   0   0.0 ( 0 )
 Added by Giulio D'Odorico
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how universality classes of O(N)-symmetric models depend continuously on the dimension d and the number of field components N. We observe, from a renormalization group perspective, how the implications of the Mermin-Wagner-Hohenberg theorem set in as we gradually deform theory space towards d=2. For fractal dimension in the range 2<d<3 we observe, for any N bigger than or equal to 1, a finite family of multi-critical effective potentials of increasing order. Apart for the N=1 case, these disappear in d=2 consistently with the Mermin-Wagner-Hohenberg theorem. Finally, we study O(N=0)-universality classes and find an infinite family of these in two dimensions.



rate research

Read More

Just over fifty years ago, Pierre Hohenberg developed a rigorous proof of the non-existence of long-range order in a two-dimensional superfluid or superconductor at finite temperatures. The proof was immediately extended by N. D. Mermin and H. Wagner to the Heisenberg ferromagnet and antiferromagnet, and shortly thereafter, by Mermin to prove the absence of translational long-range order in a two-dimensional crystal, whether in quantum or classical mechanics. In this paper, we present an extension of the Hohenberg-Mermin-Wagner theorem to give a rigorous proof of the impossibility of long-range ferromagnetic order in an itinerant electron system without spin-orbit coupling or magnetic dipole interactions. We also comment on some situations where there are compelling arguments that long-range order is impossible but no rigorous proof has been given, as well as situations, such as a magnet with long range interactions, or orientational order in a two-dimensional crystal, where long-range order can occur that breaks a continuous symmetry.
We study the conformal bootstrap for 3D CFTs with O(N) global symmetry. We obtain rigorous upper bounds on the scaling dimensions of the first O(N) singlet and symmetric tensor operators appearing in the $phi_i times phi_j$ OPE, where $phi_i$ is a fundamental of O(N). Comparing these bounds to previous determinations of critical exponents in the O(N) vector models, we find strong numerical evidence that the O(N) vector models saturate the bootstrap constraints at all values of N. We also compute general lower bounds on the central charge, giving numerical predictions for the values realized in the O(N) vector models. We compare our predictions to previous computations in the 1/N expansion, finding precise agreement at large values of N.
We use numerical bootstrap techniques to study correlation functions of a traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. We discover several families of kinks, which do not correspond to any known model and we discuss possible candidates. We then specialize to the case $N=4$, which has been conjectured to describe a phase transition in the antiferromagnetic real projective model $ARP^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to a closed region overlapping with the lattice prediction. The region is still present after pushing the numerics in the single correlator case or when considering a mixed system involving $t$ and the lowest dimension scalar singlet.
Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the analytic bootstrap, we calculate anomalous dimensions and OPE coefficients as power series in $varepsilon=4-d$ and in $1/n$, with a method that generalizes to arbitrary global symmetry. Whenever comparison is possible, our results agree with earlier results obtained with diagrammatic methods in the literature. Using the numerical bootstrap, we obtain a wide variety of operator dimension bounds, and we find several islands (isolated allowed regions) in parameter space for $O(2)times O(n)$ theories for various values of $n$. Some of these islands can be attributed to fixed points predicted by perturbative methods like the $varepsilon$ and large-$n$ expansions, while others appear to arise due to fixed points that have been claimed to exist in resummations of perturbative beta functions.
We apply the methods of modern analytic bootstrap to the critical $O(N)$ model in a $1/N$ expansion. At infinite $N$ the model possesses higher spin symmetry which is weakly broken as we turn on $1/N$. By studying consistency conditions for the correlator of four fundamental fields we derive the CFT-data for all the (broken) currents to order $1/N$, and the CFT-data for the non-singlet currents to order $1/N^2$. To order $1/N$ our results are in perfect agreement with those in the literature. To order $1/N^2$ we reproduce known results for anomalous dimensions and obtain a variety of new results for structure constants, including the global symmetry central charge $C_J$ to this order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا