No Arabic abstract
The dual to a tetrahedron consists of a single vertex at which four edges and six faces are incident. Along each edge, three faces converge. A 2-foam is a compact topological space such that each point has a neighborhood homeomorphic to a neighborhood of that complex. Knotted foams in 4-dimensional space are to knotted surfaces, as knotted trivalent graphs are to classical knots. The diagram of a knotted foam consists of a generic projection into 4-space with crossing information indicated via a broken surface. In this paper, a finite set of moves to foams are presented that are analogous to the Reidemeister-type moves for knotted graphs. These moves include the Roseman moves for knotted surfaces. Given a pair of diagrams of isotopic knotted foams there is a finite sequence of moves taken from this set that, when applied to one diagram sequentially, produces the other diagram.
We prove that any diagram of the unknot with c crossings may be reduced to the trivial diagram using at most (236 c)^{11} Reidemeister moves. Moreover, every diagram in this sequence has at most (7 c)^2 crossings. We also prove a similar theorem for split links, which provides a polynomial upper bound on the number of Reidemeister moves required to transform a diagram of the link into a disconnected diagram.
We study the number of Reidemeister type III moves using Fox n-colorings of knot diagrams.
Dabkowski and Sahi defined an invariant of a link in the $3$-sphere, which is preserved under $4$-moves. This invariant is a quotient of the fundamental group of the complement of the link. It is generally difficult to distinguish the Dabkowski-Sahi invariants of given links. In this paper, we give a necessary condition for the existence of an isomorphism between the Dabkowski-Sahi invariant of a link and that of the corresponding trivial link. Using this condition, we provide a practical obstruction to a link to be trivial up to $4$-moves.
It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the $E_6$ subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair $(G,lambda)$. The cases that are constructed mathematically include: 1. $G$ is a finite group--the Dijkgraaf-Witten TQFTs; 2. $G$ is torus $T^n$; 3. $G$ is a connected semi-simple Lie group--the Reshetikhin-Turaev TQFTs. We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half $E_6$ TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.
It is one of the most important facts in 4-dimensional topology that not every spherical homology class of a 4-manifold can be represented by an embedded sphere. In 1978, M. Freedman and R. Kirby showed that in the simply connected case, many of the obstructions to constructing such a sphere vanish if one modifies the ambient 4-manifold by adding products of 2-spheres, a process which is usually called stabilisation. In this paper, we extend this result to non-simply connected 4-manifolds and show how it is related to the Spin^c-bordism groups of Eilenberg-MacLane spaces.