Do you want to publish a course? Click here

On exotic modular tensor categories

205   0   0.0 ( 0 )
 Added by Zhenghan Wang
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the $E_6$ subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair $(G,lambda)$. The cases that are constructed mathematically include: 1. $G$ is a finite group--the Dijkgraaf-Witten TQFTs; 2. $G$ is torus $T^n$; 3. $G$ is a connected semi-simple Lie group--the Reshetikhin-Turaev TQFTs. We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half $E_6$ TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.



rate research

Read More

A fundamental theorem of P. Deligne (2002) states that a pre-Tannakian category over an algebraically closed field of characteristic zero admits a fiber functor to the category of supervector spaces (i.e., is the representation category of an affine proalgebraic supergroup) if and only if it has moderate growth (i.e., the lengths of tensor powers of an object grow at most exponentially). In this paper we prove a characteristic p version of this theorem. Namely we show that a pre-Tannakian category over an algebraically closed field of characteristic p>0 admits a fiber functor into the Verlinde category Ver_p (i.e., is the representation category of an affine group scheme in Ver_p) if and only if it has moderate growth and is Frobenius exact. This implies that Frobenius exact pre-Tannakian categories of moderate growth admit a well-behaved notion of Frobenius-Perron dimension. It follows that any semisimple pre-Tannakian category of moderate growth has a fiber functor to Ver_p (so in particular Delignes theorem holds on the nose for semisimple pre-Tannakian categories in characteristics 2,3). This settles a conjecture of the third author from 2015. In particular, this result applies to semisimplifications of categories of modular representations of finite groups (or, more generally, affine group schemes), which gives new applications to classical modular representation theory. For example, it allows us to characterize, for a modular representation V, the possible growth rates of the number of indecomposable summands in V^{otimes n} of dimension prime to p.
We develop a theory of Frobenius functors for symmetric tensor categories (STC) $mathcal{C}$ over a field $bf k$ of characteristic $p$, and give its applications to classification of such categories. Namely, we define a twisted-linear symmetric monoidal functor $F: mathcal{C}to mathcal{C}boxtimes {rm Ver}_p$, where ${rm Ver}_p$ is the Verlinde category (the semisimplification of ${rm Rep}_{bf k}(mathbb{Z}/p)$). This generalizes the usual Frobenius twist functor in modular representation theory and also one defined in arXiv:1503.01492, where it is used to show that if $mathcal{C}$ is finite and semisimple then it admits a fiber functor to ${rm Ver}_p$. The main new feature is that when $mathcal{C}$ is not semisimple, $F$ need not be left or right exact, and in fact this lack of exactness is the main obstruction to the existence of a fiber functor $mathcal{C}to {rm Ver}_p$. We show, however, that there is a 6-periodic long exact sequence which is a replacement for the exactness of $F$, and use it to show that for categories with finitely many simple objects $F$ does not increase the Frobenius-Perron dimension. We also define the notion of a Frobenius exact category, which is a STC on which $F$ is exact, and define the canonical maximal Frobenius exact subcategory $mathcal{C}_{rm ex}$ inside any STC $mathcal{C}$ with finitely many simple objects. Namely, this is the subcategory of all objects whose Frobenius-Perron dimension is preserved by $F$. We prove that a finite STC is Frobenius exact if and only if it admits a (necessarily unique) fiber functor to ${rm Ver}_p$. We also show that a sufficiently large power of $F$ lands in $mathcal{C}_{rm ex}$. Also, in characteristic 2 we introduce a slightly weaker notion of an almost Frobenius exact category and show that a STC with Chevalley property is (almost) Frobenius exact.
106 - Dave Benson , Pavel Etingof , 2020
We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $bf k$. If ${rm char}({bf k})=p>0$, we use this method to construct generalizations ${rm Ver}_{p^n}$, ${rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(bf k)$ by the $n$-th Steinberg module, and ${rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(bf k)$-modules. We show that ${rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $mathbb{Z}[2cos(2pi/p^n)]$, and that ${rm Ver}_{p^n}$ embeds into ${rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $bf k$ admits a fiber functor to the union ${rm Ver}_{p^infty}$ of the nested sequence ${rm Ver}_{p}subset {rm Ver}_{p^2}subsetcdots$. This would provide an analog of Delignes theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${rm Ver}_p$.
164 - Liang Kong , Ingo Runkel 2008
We consider algebras in a modular tensor category C. If the trace pairing of an algebra A in C is non-degenerate we associate to A a commutative algebra Z(A), called the full centre, in a doubled version of the category C. We prove that two simple algebras with non-degenerate trace pairing are Morita-equivalent if and only if their full centres are isomorphic as algebras. This result has an interesting interpretation in two-dimensional rational conformal field theory; it implies that there cannot be several incompatible sets of boundary conditions for a given bulk theory.
This is an expanded version of the notes by the second author of the lectures on symmetric tensor categories given by the first author at Ohio State University in March 2019 and later at ICRA-2020 in November 2020. We review some aspects of the current state of the theory of symmetric tensor categories and discuss their applications, including ones unavailable in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا