No Arabic abstract
We investigate the existence of symmetry-protected topological phases in one-dimensional alkaline-earth cold fermionic atoms with general half-integer nuclear spin I at half filling. In this respect, some orbital degrees of freedom are required. They can be introduced by considering either the metastable excited state of alkaline-earth atoms or the p-band of the optical lattice. Using complementary techniques, we show that SU(2) Haldane topological phases are stabilised from these orbital degrees of freedom. On top of these phases, we find the emergence of topological phases with enlarged SU(2I+1) symmetry which depend only on the nuclear spin degrees of freedom. The main physical properties of the latter phases are further studied using a matrix-product state approach. On the one hand, we find that these phases are symmetry-protected topological phases, with respect to inversion symmetry, when I=1/2,5/2,9/2,..., which is directly relevant to ytterbium and strontium cold fermions. On the other hand, for the other values of I(=half-odd integer), these topological phases are stabilised only in the presence of exact SU(2I+1)-symmetry.
A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of a low-energy approach and DMRG calculations, we show the emergence of gapless and gapped phases depending on the parity of $N$ for attractive interactions at half-filling. The analogue of the Haldane phase of the spin-1 Heisenberg chain is stabilized for N=2 with non-local string charge correlation, and pseudo-spin 1/2 edge states. At the heart of this even-odd behavior is the existence of a spin-singlet pseudo-spin $N/2$ operator which governs the low-energy properties of the model for attractive interactions and gives rise to the Haldane physics.
Symmetry-protected topological (SPT) phases are short-range entangled quantum phases with symmetry, which have gapped excitations in the bulk and gapless modes at the edge. In this paper, we study the SPT phases in the spin-1 Heisenberg chain with a single-ion anisotropy D, which has a quantum phase transition between a Haldane phase and a large-D phase. Using symmetric multiscale entanglement renormalization ansatz (MERA) tensor networks, we study the nonlocal order parameters for time-reversal and inversion symmetry. For the inversion symmetric MERA, we propose a brick-and-rope representation that gives a geometrical interpretation of inversion symmetric tensors. Finally, we study the symmetric renormalization group (RG) flow of the inversion symmetric string-order parameter, and show that entanglement renormalization with symmetric tensors produces proper behavior of the RG fixed-points.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
Recently, it has been found that there exist symmetry-protected topological phases of fermions, which have no realizations in non-interacting fermionic systems or bosonic models. We study the edge states of such an intrinsically interacting fermionic SPT phase in two spatial dimensions, protected by $mathbb{Z}_4timesmathbb{Z}_2^T$ symmetry. We model the edge Hilbert space by replacing the internal $mathbb{Z}_4$ symmetry with a spatial translation symmetry, and design an exactly solvable Hamiltonian for the edge model. We show that at low-energy the edge can be described by a two-component Luttinger liquid, with nontrivial symmetry transformations that can only be realized in strongly interacting systems. We further demonstrate the symmetry-protected gaplessness under various perturbations, and the bulk-edge correspondence in the theory.
We study the Z2 topologically ordered surface state of three-dimensional bosonic SPT phases with the discrete symmetries G1 x G2. It has been argued that the topologically ordered surface state cannot be realized on a purely two-dimensional lattice model. We carefully examine the statement and show that the surface state should break G2 if the symmetry G1 is gauged. This manifests the conflict of the symmetry G1 and G2 on the surface of the three-dimensional SPT phase. Given that there is no such phenomena in the purely two-dimensional model, it signals that the symmetries are encoded anomalously on the surface of the three-dimensional SPT phases and that the surface state can never be realized on the purely two-dimensional models.