No Arabic abstract
Recently, it has been found that there exist symmetry-protected topological phases of fermions, which have no realizations in non-interacting fermionic systems or bosonic models. We study the edge states of such an intrinsically interacting fermionic SPT phase in two spatial dimensions, protected by $mathbb{Z}_4timesmathbb{Z}_2^T$ symmetry. We model the edge Hilbert space by replacing the internal $mathbb{Z}_4$ symmetry with a spatial translation symmetry, and design an exactly solvable Hamiltonian for the edge model. We show that at low-energy the edge can be described by a two-component Luttinger liquid, with nontrivial symmetry transformations that can only be realized in strongly interacting systems. We further demonstrate the symmetry-protected gaplessness under various perturbations, and the bulk-edge correspondence in the theory.
We study Abelian braiding statistics of loop excitations in three-dimensional (3D) gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the the presence of fermionic particles, which correspond to 3D intrinsic FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with anti-unitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is $mathbb{Z}_2timesmathbb{Z}_4$. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
Abelian Chern-Simons theory, characterized by the so-called $K$ matrix, has been quite successful in characterizing and classifying Abelian fractional quantum hall effect (FQHE) as well as symmetry protected topological (SPT) phases, especially for bosonic SPT phases. However, there are still some puzzles in dealing with fermionic SPT(fSPT) phases. In this paper, we utilize the Abelian Chern-Simons theory to study the fSPT phases protected by arbitrary Abelian total symmetry $G_f$. Comparing to the bosonic SPT phases, fSPT phases with Abelian total symmetry $G_f$ has three new features: (1) it may support gapless majorana fermion edge modes, (2) some nontrivial bosonic SPT phases may be trivialized if $G_f$ is a nontrivial extention of bosonic symmetry $G_b$ over $mathbb{Z}_2^f$, (3) certain intrinsic fSPT phases can only be realized in interacting fermionic system. We obtain edge theories for various fSPT phases, which can also be regarded as conformal field theories (CFT) with proper symmetry anomaly. In particular, we discover the construction of Luttinger liquid edge theories with central charge $n-1$ for Type-III bosonic SPT phases protected by $(mathbb{Z}_n)^3$ symmetry and the Luttinger liquid edge theories for intrinsically interacting fSPT protected by unitary Abelian symmetry. The ideas and methods used here might be generalized to derive the edge theories of fSPT phases with arbitrary unitary finite Abelian total symmetry $G_f$.
We construct fixed point lattice models for group supercohomology symmetry protected topological (SPT) phases of fermions in 2+1D. A key feature of our approach is to construct finite depth circuits of local unitaries that explicitly build the ground states from a tensor product state. We then recover the classification of fermionic SPT phases, including the group structure under stacking, from the algebraic composition rules of these circuits. Furthermore, we show that the circuits are symmetric, implying that the group supercohomology phases can be many body localized. Our strategy involves first building an auxiliary bosonic model, and then fermionizing it using the duality of Chen, Kapustin, and Radicevic. One benefit of this approach is that it clearly disentangles the role of the algebraic group supercohomology data, which is used to build the auxiliary bosonic model, from that of the spin structure, which is combinatorially encoded in the lattice and enters only in the fermionization step. In particular this allows us to study our models on 2d spatial manifolds of any topology and to define a lattice-level procedure for ungauging fermion parity.
We propose the definitions of many-body topological invariants to detect symmetry-protected topological phases protected by point group symmetry, using partial point group transformations on a given short-range entangled quantum ground state. Partial point group transformations $g_D$ are defined by point group transformations restricted to a spatial subregion $D$, which is closed under the point group transformations and sufficiently larger than the bulk correlation length $xi$. By analytical and numerical calculations,we find that the ground state expectation value of the partial point group transformations behaves generically as $langle GS | g_D | GS rangle sim exp Big[ i theta+ gamma - alpha frac{{rm Area}(partial D)}{xi^{d-1}} Big]$. Here, ${rm Area}(partial D)$ is the area of the boundary of the subregion $D$, and $alpha$ is a dimensionless constant. The complex phase of the expectation value $theta$ is quantized and serves as the topological invariant, and $gamma$ is a scale-independent topological contribution to the amplitude. The examples we consider include the $mathbb{Z}_8$ and $mathbb{Z}_{16}$ invariants of topological superconductors protected by inversion symmetry in $(1+1)$ and $(3+1)$ dimensions, respectively, and the lens space topological invariants in $(2+1)$-dimensional fermionic topological phases. Connections to topological quantum field theories and cobordism classification of symmetry-protected topological phases are discussed.