Do you want to publish a course? Click here

Search for the rare decay KS -> mu+ mu-

126   0   0.0 ( 0 )
 Added by Xabier Cid Vidal
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

A search for the decay KS -> mu+ mu- is performed, based on a data sample of 1.0 fb^-1 of pp collisions at sqrt{s}=7 TeV collected by the LHCb experiment at the Large Hadron Collider. The observed number of candidates is consistent with the background-only hypothesis, yielding an upper limit of BR(KS -> mu+ mu-) < 11 (9) x 10^-9 at 95 (90)% confidence level. This limit is a factor of thirty below the previous measurement.



rate research

Read More

A search for the rare leptonic decay $B^{+} rightarrow {mu}^{+}{mu}^{-}{mu}^{+}{ u}_{{mu}}$ is performed using proton-proton collision data corresponding to an integrated luminosity of $4.7$ fb$^{-1}$ collected by the LHCb experiment. The search is carried out in the region where the lowest of the two ${mu}^{+}{mu}^{-}$ mass combinations is below $980$MeV/c$^{2}$. The data are consistent with the background-only hypothesis and an upper limit of $1.6 times 10^{-8}$ at 95% confidence level is set on the branching fraction in the stated kinematic region.
A search for the decays Bs -> mu+ mu- and B0 -> mu+ mu- is performed with 0.37 fb^-1 of pp collisions at sqrt{s} = 7 TeV collected by the LHCb experiment in 2011. The upper limits on the branching fractions are BR (Bs -> mu+ mu-) < 1.6 x 10^-8 and BR(B0 -> mu+ mu-) < 3.6 x 10^-9 at 95% confidence level. A combination of these results with the LHCb limits obtained with the 2010 dataset leads to BR (Bs -> mu+ mu-) < 1.4 x 10^-8 and BR (B0 -> mu+ mu-) < 3.2 x 10^-9 at 95% confidence level.
oindent A search for the decays $B^0_{s}rightarrow mu^+ mu^- mu^+ mu^-$ and $B^0 rightarrow mu^+ mu^- mu^+ mu^-$ is performed using data, corresponding to an integrated luminosity of 1.0ensuremath{{,fb}^{-1}}xspace, collected with the LHCb detector in 2011. The number of candidates observed is consistent with the expected background and, assuming phase-space models of the decays, limits on the branching fractions are set: {${ensuremath{cal B}xspace}(B^0_{s}rightarrow mu^+ mu^- mu^+ mu^-) < 1.6 (1.2) times 10^{-8}$} and {${ensuremath{cal B}xspace}(B^0 rightarrow mu^+ mu^- mu^+ mu^-)< 6.6 (5.3) times 10^{-9}$} at 95,% (90,%) confidence level. In addition, limits are set in the context of a supersymmetric model which allows for the $B^0_{(s)}$ meson to decay into a scalar ($S$) and pseudoscalar particle ($P$), where $S$ and $P$ have masses of 2.5 GeV and 214.3 MeV, respectively, both resonances decay into $mu^+mu^-$. The branching fraction limits for these decays are {${ensuremath{cal B}xspace}(ensuremath{B^0_{s}rightarrow SP}xspace) < 1.6 (1.2) times 10^{-8}$} and {${ensuremath{cal B}xspace}(ensuremath{B^0rightarrow SP}xspace)< 6.3 (5.1) times 10^{-9}$} at 95% (90%) confidence level.
A search for the flavor-changing neutral-current decay $Lambda_{c}^{+} to pmu^+mu^-$ is reported using a data set corresponding to an integrated luminosity of $3.0rm fb^{-1}$ collected by the LHCb collaboration. No significant signal is observed outside of the dimuon mass regions around the $phi$ and $omega$ resonances and an upper limit is placed on the branching fraction of $mathcal{B} (Lambda_{c}^{+} to pmu^+mu^-) < 7.7~(9.6)times 10^{-8}~{rm at}~90%~(95%)$ confidence level. A significant signal is observed in the $omega$ dimuon mass region for the first time.
A search for the rare decay $Sigma^+ to p mu^+ mu^-$ is performed using $pp$ collision data recorded by the LHCb experiment at centre-of-mass energies $sqrt{s} = 7$ and $8$ TeV, corresponding to an integrated luminosity of $3 fb^{-1}$. An excess of events is observed with respect to the background expectation, with a signal significance of 4.1 standard deviations. No significant structure is observed in the dimuon invariant mass distribution, in contrast with a previous result from the HyperCP experiment. The measured $Sigma^+ to p mu^+ mu^-$ branching fraction is $(2.2,^{+,1.8}_{-,1.3})times 10^{-8}$, where statistical and systematic uncertainties are included, which is consistent with the Standard Model prediction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا