Do you want to publish a course? Click here

Study of point spread in aberration-corrected high-resolution transmission electron microscopy

727   0   0.0 ( 0 )
 Added by Binghui Ge
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

For quantitative electron microscopy high precision position information is necessary so that besides an adequate resolution and sufficiently strong contrast of atoms, small width of peaks which represent atoms in structural images is needed. Size of peak is determined by point spread (PS) of instruments as well as that of atoms when point resolution reach the subangstrom scale and thus PS of instruments is comparable with that of atoms. In this article, relationship between PS with atomic numbers, sample thickness, and spherical aberration coefficients will be studied in both negative Cs imaging (NCSI) and positive Cs imaging (PCSI) modes by means of dynamical image simulation. Through comparing the peak width with different thickness and different values of spherical aberration, NCSI mode is found to be superior to PCSI considering smaller peak width in the structural image.



rate research

Read More

Incommensurate modulated structure (IMS) in Bi2Sr1.6La0.4CuO6+{delta} (BSLCO) has been studied by aberration corrected transmission electron microscopy in combination with high-dimensional (HD) space description. Two images in the negative Cs imaging (NCSI) and passive Cs imaging (PCSI) modes were deconvoluted, respectively. Similar results as to IMS have been obtained from two corresponding projected potential maps (PPMs), but meanwhile the size of dots representing atoms in the NCSI PPM is found to be smaller than that in PCSI one. Considering that size is one of influencing factors of precision, modulation functions for all unoverlapped atoms in BSLCO were determined based on the PPM obtained from the NCSI image in combination with HD space description.
120 - Pratibha Gai , Edward Boyes 2017
Advances in atomic resolution in situ environmental transmission electron microscopy for direct probing of gas-solid reactions, including at very high temperatures are described. In addition, recent developments of dynamic real time in situ studies at the Angstrom level using a hot stage in an aberration corrected environment are presented. In situ data from Pt and Pd nanoparticles on carbon with the corresponding FFT (optical diffractogram) illustrate an achieved resolution of 0.11 nm at 500 C and higher in a double aberration corrected TEM and STEM instrument employing a wider gap objective pole piece. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment.
153 - B. Gamm 2010
Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner scattering factors. Experimental and simulated intensities are in full agreement on an absolute scale.
Aberration-corrected electron microscopy can resolve the smallest atomic bond-lengths in nature. However, the high-convergence angles that enable spectacular resolution in 2D have unknown 3D resolution limits for all but the smallest objects ($< sim$8nm). We show aberration-corrected electron tomography offers new limits for 3D imaging by measuring several focal planes at each specimen tilt. We present a theoretical foundation for aberration-corrected electron tomography by establishing analytic descriptions for resolution, sampling, object size, and dose---with direct analogy to the Crowther-Klug criterion. Remarkably, aberration-corrected scanning transmission electron tomography can measure complete 3D specimen structure of unbounded object sizes up to a specified cutoff resolution. This breaks the established Crowther limit when tilt increments are twice the convergence angle or smaller. Unprecedented 3D resolution is achievable across large objects. Atomic 3D imaging (1$unicode{xC5}$) is allowed across extended objects larger than depth-of-focus (e.g. $>$ 20nm) using available microscopes and modest specimen tilting ($<$ 3$^circ$). Furthermore, aberration-corrected tomography follows the rule of dose-fractionation where a specified total dose can be divided among tilts and defoci.
In this work, an optic fiber based $textit{in situ}$ illumination system integrated into an aberration-corrected environmental transmission electron microscope (ETEM) is designed, built, characterized and applied. With this illumination system, the dynamic responses of photoactive materials to photons can be directly observed at the atomic level, and other stimuli including heating and various gases can also be applied simultaneously. Either a broadband light source or a high power laser source aiming to expedite photoreactions can be utilized, fitting different application needs. The optic fiber enters the ETEM through the objective aperture port, with a carefully designed curvature and a 30{deg} cut at the tip to orient the emitted light upwards onto the TEM specimen. The intensity distributions striking the sample from the broadband and laser sources are both measured, and due to the non-uniform distributions, an alignment procedure has been developed to align the bright spot with the electron optical axis of the TEM. The imaging and spectroscopy performances of the ETEM are proved to be maintained after incorporating this illumination system. Furthermore, Langmuir evaporation is observed when in situ laser light is applied to GaAs, demonstrating the phenomenon of optical heating on suitable semiconductor materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا