Do you want to publish a course? Click here

Evolution of the N=28 shell closure: a test bench for nuclear forces

143   0   0.0 ( 0 )
 Added by Olivier Sorlin
 Publication date 2012
  fields
and research's language is English
 Authors O. Sorlin




Ask ChatGPT about the research

The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. Experimental results are confronted to various theoretical predictions. These studies pinpoint the effects of several terms of the nucleon-nucleon interaction, such as the central, the spin-orbit, the tensor and the three-body force components, to account for the modification of the N=28 shell gap and spin-orbit splittings. Analogies between the evolution of the N=28 shell closure and other magic numbers originating from the spin-orbit interaction are proposed (N=14,50, 82 and 90). More generally, questions related to the evolution of nuclear forces towards the drip-line, in bubble nuclei, and for nuclei involved in the r-process nucleosynthesis are proposed and discussed.



rate research

Read More

307 - O. Sorlin 2014
During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.
477 - B. Bastin , S. Grevy , D. Sohler 2007
The energies of the excited states in very neutron-rich $^{42}$Si and $^{41,43}$P have been measured using in-beam $gamma$-ray spectroscopy from the fragmentation of secondary beams of $^{42,44}$S at 39 A.MeV. The low 2$^+$ energy of $^{42}$Si, 770(19) keV, together with the level schemes of $^{41,43}$P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that $^{42}$Si is best described as a well deformed oblate rotor.
The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radioactive $^{44}$S beam. Using a combination of prompt and delayed $gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest.
The exotic Borromean nucleus $^{20}$Mg with $N$ = 8, located at the proton drip-line provides a unique testing ground for nuclear forces and the evolution of shell structure in the neutron-deficient region. We report on the first observation of proton unbound resonances together with bound states in $^{20}$Mg from the $^{20}$Mg($d$,$d$) reaction performed at TRIUMF. Phenomenological shell-model calculations offer a reasonable description. However, our experimental results present a challenge for current first-principles nuclear structure approaches and point to the need for improved chiral forces and {it ab initio} calculations. Furthermore, the differential cross section of the first excited state is compared with distorted-wave Born approximation calculations to deduce a neutron quadrupole deformation parameter of $beta_n$=0.46$pm$0.21. This provides the first indication of a possible weakening of the $N$ = 8 shell closure at the proton drip-line.
The FSU $spsdfp$ cross-shell interaction for the shell model was successfully fitted to a wide range of mostly intruder negative parity states of the $sd$ shell nuclei. This paper reports the application of the FSU interaction to systematically trace out the relative positions of the effective single-particle energies of the $0f_{7/2}$ and $1p_{3/2}$ orbitals, the evolution from normally ordered low-lying states to the Island of Inversion (IoI), and the behavior of a wide range of excited states with a $0f_{7/2}$ proton and neutron coupled to maximum spin of $7 hbar$. Above a proton number of about 13 the $0f_{7/2}$ orbital lies below that of $1p_{3/2}$, which is considered normal ordering, but systematically at $Z = 10$ to $12$ the orbitals cross. The calculations reproduce well the 2p2h - 0p0h inversion in the configurations of nuclei inside the IoI, they reproduce the absolute binding energies and the transition to normal ordering as the proton number approaches that of the neutrons. The important role of $1p_{3/2}$ neutron pairs in the IoI is also demonstrated. The calculations account well for the energies of the fully aligned states with 0, 1, or 2 individual $sd$ nucleon aligned in spin with the aligned $pi 0f_{7/2}$ - $ u 0f_{7/2}$ pair and reproduce well their systematic variation with $A$ and number of aligned $sd$ nucleons. The results presented in this paper give hope for the predictive power of the FSU interaction for more exotic nuclei to be explored in near future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا