No Arabic abstract
A current interest in nuclear reactions, specifically with rare isotopes concentrates on their reaction with neutrons, in particular neutron capture. In order to facilitate reactions with neutrons one must use indirect methods using deuterons as beam or target of choice. For adding neutrons, the most common reaction is the (d,p) reaction, in which the deuteron breaks up and the neutron is captured by the nucleus. Those (d,p) reactions may be viewed as a three-body problem in a many-body context. This contribution reports on a feasibility study for describing phenomenological nucleon-nucleus optical potentials in momentum space in a separable form, so that they may be used for Faddeev calculations of (d,p) reactions.
We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.
A new framework for $A(d,p)B$ reactions is introduced by merging the microscopic approach to computing the properties of the nucleon-target systems and the three-body $n+p+A$ reaction formalism, thus providing a consistent link between the reaction cross sections and the underlying microscopic structure. In this first step toward a full microscopic description, we focus on the inclusion of the neutron-target microscopic properties. The properties of the neutron-target subsystem are encapsulated in the Greens function which is computed with the Coupled Cluster theory using a chiral nucleon-nucleon and three-nucleon interactions. Subsequently, this many-body information is introduced in the few-body Greens Function Transfer approach to $(d,p)$ reactions. Our benchmarks on stable targets $^{40,48}$Ca show an excellent agreement with the data. We then proceed to make specific predictions for $(d,p)$ on neutron rich $^{52,54}$Ca isotopes. These predictions are directly relevant to testing the new magic numbers $N=32,34$ and are expected to be feasible in the first campaign of the projected FRIB facility.
A method to calculate reactions in quantum mechanics is outlined. It is advantageous, in particular, in problems with many open channels of various nature i.e. when energy is not low. In the method there is no need to specify reaction channels in a dynamics calculation. These channels come into play at merely the kinematics level and only after a dynamics calculation is done. This calculation is of the bound--state type while continuum spectrum states never enter the game.
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.
The method of integral transforms is reviewed. In the framework of this method reaction observables are obtained with the bound--state calculation techniques. New developments are reported.