Do you want to publish a course? Click here

Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States

114   0   0.0 ( 0 )
 Added by Robert Roth
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.



rate research

Read More

Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used, which can reduce the computational task. Corrections up to the third order in energy and up to the second order in radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius, rather than calculate corrections to the occupation propabilities of single-particle orbits as found in other treatments. We compare our results with other methods where available and find good agreement. This supports the conclusion that our methods produce reasonably converged results with these interactions. We also compare our results with experimental data.
On the way of a microscopic derivation of covariant density functionals, the first complete solution of the relativistic Brueckner-Hartree-Fock (RBHF) equations is presented for symmetric nuclear matter. In most of the earlier investigations, the $G$-matrix is calculated only in the space of positive energy solutions. On the other side, for the solution of the relativistic Hartree-Fock (RHF) equations, also the elements of this matrix connecting positive and negative energy solutions are required. So far, in the literature, these matrix elements are derived in various approximations. We discuss solutions of the Thompson equation for the full Dirac space and compare the resulting equation of state with those of earlier attempts in this direction.
97 - Justin Lietz 2016
We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Greens function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.
72 - Qiang Wu , Furong Xu 2018
We present a simplified method to generate the Hartree-Fock Gamow basis from realistic nuclear forces. The Hartree-Fock iteration in the harmonic-oscillator basis is first performed, and then the obtained HF potential is analytically continued to the complex-k plane, finally by solving the Schrodinger equation in the complex-k plane the Gamow basis is obtained. As examples, the method is applied to 4He and 22O with the renormalized chiral N3LO potential. The basis obtained which includes bound, resonant and scattering states can be further used in many-body calculations to study weakly bound nuclei.
The computation of the thermodynamic properties of nuclear matter is a central task of theoretical nuclear physics. The nuclear equation of state is an essential quantity in nuclear astrophysics and governs the properties of neutron stars and core-collapse supernovae. The framework of chiral effective field theory provides the basis for the description of nuclear interactions in terms of a systematic low-energy expansion. In this thesis, we apply chiral two- and three-nucleon interactions in perturbative many-body calculations of the thermodynamic equation of state of infinite homogeneous nuclear matter. The conceptual issues that arise concerning the consistent generalization of the standard zero-temperature form of many-body perturbation theory to finite temperatures are investigated in detail. The structure of many-body perturbation theory at higher orders is examined, in particular concerning the role of the so-called anomalous contributions. The first-order nuclear liquid-gas phase transition is analyzed with respect to its dependence on temperature and the neutron-to-proton ratio. Furthermore, the convergence behavior of the expansion of the equation of state in terms of the isospin asymmetry is examined. It is shown that the expansion coefficients beyond the quadratic order diverge in the zero-temperature limit, implying a nonanalytic form of the isospin-asymmetry dependence at low temperatures. This behavior is associated with logarithmic terms in the isospin-asymmetry dependence at zero temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا