No Arabic abstract
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the correspondingly shrinking register, we show that the algorithm converges to mixed states with 50% overlap with the target state in the bit positions still present. As an alternative to error correction, we present a procedure that combines the outcome of different trials of the algorithm to determine the solution to the full search problem. The procedure may be relevant for experiments where the algorithm is adapted as the loss of particles is registered, and for experiments with Rydberg blockade interactions among neutral atoms, where monitoring of the atom losses is not even necessary.
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers algorithm. We study the algorithms intrinsic robustness when no quantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency when noise is added, but does not slow down. We also study the maximal noise under which the iterated quantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales with the size of the phone book as N^-2/3.
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We question whether the measurement based quantum computing algorithm is in fact Grovers algorithm or simply a similar oracular search method. The two algorithms share several qualitative features especially in the case of the trivial 4 element search, which is the largest size photonic search algorithm that has been experimentally implemented to date. This has led some to refer to both substantiations as Grovers algorithm. We compare multiple features of the two algorithms including the behavior of the oracle tags and the entanglement dynamics, both qualitatively and quantitatively. We find significant and fundamental differences in the operation of the two algorithms, particularly in cases involving searches on more than four elements.
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. In this paper, we introduce an optimization of the inversion-by-the-mean step of the algorithm. This optimization serves two purposes: from a practical perspective, it can lead to a performance improvement; from a theoretical one, it leads to a novel interpretation of the actual nature of this step. This step is a reflection, which is realized by (a) cancelling the superposition of a general state to revert to the original all-zeros state, (b) flipping the sign of the amplitude of the all-zeros state, and finally (c) reverting back to the superposition state. Rather than canceling the superposition, our approach allows for going forward to another state that makes the reflection easier. We validate our approach on set and array search, and confirm our results experimentally on real quantum hardware.
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by partitioning the states into classes, whose probabilities are increased at different levels before or during amplification. The partitioning process is based on the binomial distribution. If the classes to which the search target states belong are known in advance, the number of iterations in the Amplitude Amplification algorithm can be drastically reduced compared to the standard version. In the more likely case in which the relevant classes are not known in advance, their selection can be configured at run time, or a random approach can be employed, similar to classical algorithms such as binary search. In particular, we apply this method in the context of our previously introduced Quantum Dictionary pattern, where keys and values are encoded in two separate registers, and the value-encoding method is independent of the type of superposition used in the key register. We consider this type of structure to be the natural setup for search. We confirm the validity of our new approach through experimental results obtained on real quantum hardware, the Honeywell System Model H0 trapped-ion quantum computer.