No Arabic abstract
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. In this paper, we introduce an optimization of the inversion-by-the-mean step of the algorithm. This optimization serves two purposes: from a practical perspective, it can lead to a performance improvement; from a theoretical one, it leads to a novel interpretation of the actual nature of this step. This step is a reflection, which is realized by (a) cancelling the superposition of a general state to revert to the original all-zeros state, (b) flipping the sign of the amplitude of the all-zeros state, and finally (c) reverting back to the superposition state. Rather than canceling the superposition, our approach allows for going forward to another state that makes the reflection easier. We validate our approach on set and array search, and confirm our results experimentally on real quantum hardware.
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by partitioning the states into classes, whose probabilities are increased at different levels before or during amplification. The partitioning process is based on the binomial distribution. If the classes to which the search target states belong are known in advance, the number of iterations in the Amplitude Amplification algorithm can be drastically reduced compared to the standard version. In the more likely case in which the relevant classes are not known in advance, their selection can be configured at run time, or a random approach can be employed, similar to classical algorithms such as binary search. In particular, we apply this method in the context of our previously introduced Quantum Dictionary pattern, where keys and values are encoded in two separate registers, and the value-encoding method is independent of the type of superposition used in the key register. We consider this type of structure to be the natural setup for search. We confirm the validity of our new approach through experimental results obtained on real quantum hardware, the Honeywell System Model H0 trapped-ion quantum computer.
The recursion equation analysis of Grovers quantum search algorithm presented by Biham et al. [PRA 60, 2742 (1999)] is generalized. It is applied to the large class of Grovers type algorithms in which the Hadamard transform is replaced by any other unitary transformation and the phase inversion is replaced by a rotation by an arbitrary angle. The time evolution of the amplitudes of the marked and unmarked states, for any initial complex amplitude distribution is expressed using first order linear difference equations. These equations are solved exactly. The solution provides the number of iterations T after which the probability of finding a marked state upon measurement is the highest, as well as the value of this probability, P_max. Both T and P_max are found to depend on the averages and variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments.
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers algorithm. We study the algorithms intrinsic robustness when no quantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency when noise is added, but does not slow down. We also study the maximal noise under which the iterated quantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales with the size of the phone book as N^-2/3.
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We report the implementation of Grovers quantum search algorithm in the scalable system of trapped atomic ion quantum bits. Any one of four possible states of a two-qubit memory is marked, and following a single query of the search space, the marked element is successfully recovered with an average probability of 60(2)%. This exceeds the performance of any possible classical search algorithm, which can only succeed with a maximum average probability of 50%.