Do you want to publish a course? Click here

The Power of Noisy Fermionic Quantum Computation

218   0   0.0 ( 0 )
 Added by Fernando de Melo
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of perfect braiding operations, universal quantum computation is possible if the noise rate on a particular 4-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated classically: we explicitly show that the noisy ancilla is a convex mixture of Gaussian fermionic states in this region, while for noise rates below 53% we prove that the state is not a mixture of Gaussian states. These results were obtained by generalizing concepts in entanglement theory to the setting of Gaussian states and their convex mixtures. In particular we develop a complete set of criteria, namely the existence of a Gaussian-symmetric extension, which determine whether a state is a convex mixture of Gaussian states.



rate research

Read More

The universal quantum computation model based on quantum walk by Childs has opened the door for a new way of studying the limitations and advantages of quantum computation, as well as for its intermediate-term simulation. In recent years, the growing interest in noisy intermediate-scale quantum computers (NISQ) has lead to intense efforts being directed at understanding the computational advantages of open quantum systems. In this work, we extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers. Our method does not use explicit purification, and allows to ignore the environment degrees of freedom and get direct and much more efficient access to the entanglement properties of the system. In our representation, the quantum walk amplitudes represent elements in a density matrix rather than the wavefunction of a pure state. Despite the non-trivial manifestation of the normalization requirement in this setting, we model the application of general unitary gates and nonunitary channels, with an explicit implementation protocol for channels that are commonly used in noise models.
70 - A. Vourdas 2018
Exterior calculus with its three operations meet, join and hodge star complement, is used for the representation of fermion-hole systems and for fermionic analogues of logical gates. Two different schemes that implement fermionic quantum computation, are proposed. The first scheme compares fermionic gates with Boolean gates, and leads to novel electronic devices that simulate fermionic gates. The second scheme usesa well known map between fermionic and multi-qubit systems, to simulate fermionic gates within multi-qubit systems.
We study quasi-exact quantum error correcting codes and quantum computation with them. A quasi-exact code is an approximate code such that it contains a finite number of scaling parameters, the tuning of which can flow it to corresponding exact codes, serving as its fixed points. The computation with a quasi-exact code cannot realize any logical gate to arbitrary accuracy. To overcome this, the notion of quasi-exact universality is proposed, which makes quasi-exact quantum computation a feasible model especially for executing moderate-size algorithms. We find that the incompatibility between universality and transversality of the set of logical gates does not persist in the quasi-exact scenario. A class of covariant quasi-exact codes is defined which proves to support transversal and quasi-exact universal set of logical gates for $SU(d)$. This work opens the possibility of quantum computation with quasi-exact universality, transversality, and fault tolerance.
Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree $d$ to a qubit simulator Hamiltonian composed of Pauli operators of weight $O(d)$. A system of $m$ fermi modes gets mapped to $n=O(md)$ qubits. We propose Generalized Superfast Encodings (GSE) which require the same number of qubits as the original one but have more favorable properties. First, we describe a GSE such that the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree $dge 6$. In contrast, we prove that the original Superfast Encoding lacks the error correction property for $dle 6$. Secondly, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from $O(d)$ to $O(log{d})$. The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the new encoding to the fermionic Hubbard model on a 2D lattice.
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterisation of topological phases of matter and their experimental realisation. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This `focus on brings together several of the latest developments in the field and facilitates the synergy between different approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا