No Arabic abstract
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterisation of topological phases of matter and their experimental realisation. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This `focus on brings together several of the latest developments in the field and facilitates the synergy between different approaches.
We study quasi-exact quantum error correcting codes and quantum computation with them. A quasi-exact code is an approximate code such that it contains a finite number of scaling parameters, the tuning of which can flow it to corresponding exact codes, serving as its fixed points. The computation with a quasi-exact code cannot realize any logical gate to arbitrary accuracy. To overcome this, the notion of quasi-exact universality is proposed, which makes quasi-exact quantum computation a feasible model especially for executing moderate-size algorithms. We find that the incompatibility between universality and transversality of the set of logical gates does not persist in the quasi-exact scenario. A class of covariant quasi-exact codes is defined which proves to support transversal and quasi-exact universal set of logical gates for $SU(d)$. This work opens the possibility of quantum computation with quasi-exact universality, transversality, and fault tolerance.
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of perfect braiding operations, universal quantum computation is possible if the noise rate on a particular 4-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated classically: we explicitly show that the noisy ancilla is a convex mixture of Gaussian fermionic states in this region, while for noise rates below 53% we prove that the state is not a mixture of Gaussian states. These results were obtained by generalizing concepts in entanglement theory to the setting of Gaussian states and their convex mixtures. In particular we develop a complete set of criteria, namely the existence of a Gaussian-symmetric extension, which determine whether a state is a convex mixture of Gaussian states.
Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-based model for universal quantum computation that simulates the braiding and fusion of Majorana modes. To derive our model we develop a general framework that maps any scheme of fault-tolerant quantum computation with stabilizer codes into the measurement-based picture. As such, our framework gives an explicit way of producing fault-tolerant models of universal quantum computation with linear optics using protocols developed using the stabilizer formalism. Given the remarkable fault-tolerant properties that Majorana modes promise, the main example we present offers a robust and resource efficient proposal for photonic quantum computation.
We introduce a new method for representing the low energy subspace of a bosonic field theory on the qubit space of digital quantum computers. This discretization leads to an exponentially precise description of the subspace of the continuous theory thanks to the Nyquist-Shannon sampling theorem. The method makes the implementation of quantum algorithms for purely bosonic systems as well as fermion-boson interacting systems feasible. We present algorithmic circuits for computing the time evolution of these systems. The complexity of the algorithms scales polynomially with the system size. The algorithm is a natural extension of the existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to systems involving bosons and fermion-boson interactions and has a broad variety of potential applications in particle physics, condensed matter, etc. Due to the relatively small amount of additional resources required by the inclusion of bosons in our algorithm, the simulation of electron-phonon and similar systems can be placed in the same near-future reach as the simulation of interacting electron systems. We benchmark our algorithm by implementing it for a $2$-site Holstein polaron problem on an Atos Quantum Learning Machine (QLM) quantum simulator. The polaron quantum simulations are in excellent agreement with the results obtained by exact diagonalization.