No Arabic abstract
Highly spin selective transport of electrons through a helically shaped electrostatic potential is demonstrated in the frame of a minimal model approach. The effect is significant even in the case of weak spin-orbit coupling. Two main factors determine the selectivity, an unconventional Rashba- like spin-orbit interaction, reflecting the helical symmetry of the system, and a weakly dispersive electronic band of the helical system. The weak electronic coupling, associated with the small dispersion, leads to a low mobility of the charges in the system and allows even weak spin-orbit interactions to be effective. The results are expected to be generic for chiral molecular systems displaying low spin-orbit coupling and low conductivity.
Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.
Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size selective membranes because of its atomic thickness, high mechanical strength, relative inertness, and impermeability to all standard gases. However, pores that can exclude larger molecules, but allow smaller molecules to pass through have to be introduced into the material. Here we show UV-induced oxidative etching can create pores in micrometre-sized graphene membranes and the resulting membranes used as molecular sieves. A pressurized blister test and mechanical resonance is used to measure the transport of a variety of gases (H2, CO2, Ar, N2, CH4, and SF6) through the pores. The experimentally measured leak rates, separation factors, and Raman spectrum agree well with models based on effusion through a small number of angstrom-sized pores.
Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme selectivity combined with high flow rates. Here we study gas transport through individual graphene pores with an effective diameter of about 2 angstroms, or about one missing carbon ring, which are created reproducibly by a short-time exposure to a low-kV electron beam. Helium and hydrogen permeate easily through these pores whereas larger molecules such as xenon and methane are blocked. Permeating gases experience activation barriers that increase quadratically with the kinetic diameter, and the transport process crucially involves surface adsorption. Our results reveal underlying mechanisms for the long sought-after exponential selectivity and suggest the bounds on possible performance of porous two-dimensional membranes.
Gas permeation through nanoscale pores is ubiquitous in nature and plays an important role in a plethora of technologies. Because the pore size is typically smaller than the mean free path of gas molecules, their flow is conventionally described by the Knudsen theory that assumes diffuse reflection (random-angle scattering) at confining walls. This assumption has proven to hold surprisingly well in experiment, and only a few cases of partially specular (mirror-like) reflection are known. Here we report gas transport through angstrom-scale channels with atomically-flat walls and show that surface scattering can be both diffuse or specular, depending on fine details of the surface atomic landscape, and quantum effects contribute to the specularity at room temperature. The channels made from graphene or boron nitride allow a helium gas flow that is orders of magnitude faster than expected from the theory. This is explained by specular surface scattering, which leads to ballistic transport and frictionless gas flow. Similar channels but with molybdenum disulfide walls exhibit much slower permeation that remains well described by Knudsen diffusion. The difference is attributed to stronger atomic corrugations at MoS2 surfaces, which are similar in height to the size of transported atoms and their de Broglie wavelength. The importance of the latter, matter-wave contribution is corroborated by the observation of a reversed isotope effect in which the mass flow of hydrogen is notably higher than that of deuterium, in contrast to the relation expected for classical flows. Our results provide insights into atomistic details of molecular permeation, which so far could be accessed only in simulations, and show a possibility of studying gas transport under a controlled confinement comparable to the quantum-mechanical size of atoms.
Spin-helical states, which arise in quasi-one-dimensional (1D) channels with spin-orbital (SO) coupling, underpin efforts to realize topologically-protected quantum bits based on Majorana modes in semiconductor nanowires. Detecting helical states is challenging due to non-idealities present in real devices. Here we show by means of tight-binding calculations that by using ferromagnetic contacts it is possible to detect helical modes with high sensitivity even in the presence of realistic device effects, such as quantum interference. This is possible because of the spin-selective transmission properties of helical modes. In addition, we show that spin-polarized contacts provide a unique path to investigate the spin texture and spin-momentum locking properties of helical states. Our results are of interest not only for the ongoing development of Majorana qubits, but also as for realizing possible spin-based quantum devices, such as quantum spin modulators and interconnects based on spin-helical channels.