Do you want to publish a course? Click here

Low Depth Quantum Circuits for Ising Models

239   0   0.0 ( 0 )
 Added by Gavin K. Brennen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A scheme for measuring complex temperature partition functions of Ising models is introduced. In the context of ordered qubit registers this scheme finds a natural translation in terms of global operations, and single particle measurements on the edge of the array. Two applications of this scheme are presented. First, through appropriate Wick rotations, those amplitudes can be analytically continued to yield estimates for partition functions of Ising models. Bounds on the estimation error, valid with high confidence, are provided through a central-limit theorem, which validity extends beyond the present context. It holds for example for estimations of the Jones polynomial. Interestingly, the kind of state preparations and measurements involved in this application can in principle be made instantaneous, i.e. independent of the system size or the parameters being simulated. Second, the scheme allows to accurately estimate some non-trivial invariants of links. A third result concerns the computational power of estimations of partition functions for real temperature classical ferromagnetic Ising models on a square lattice. We provide conditions under which estimating such partition functions allows one to reconstruct scattering amplitudes of quantum circuits making the problem BQP-hard. Using this mapping, we show that fidelity overlaps for ground states of quantum Hamiltonians, which serve as a witness to quantum phase transitions, can be estimated from classical Ising model partition functions. Finally, we show that the ability to accurately measure corner magnetizations on thermal states of two-dimensional Ising models with magnetic field leads to fully polynomial random approximation schemes (FPRAS) for the partition function. Each of these results corresponds to a section of the text that can be essentially read independently.



rate research

Read More

Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in $Dge 1$ spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth $O(log N)$ random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any $D$. Previous results on random circuits have only shown that $O(N^{1/D})$ depth suffices or that $O(log^3 N)$ depth suffices for all-to-all connectivity ($D to infty$). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with $N$. We find that the requisite depth scales like $O(log N)$ only for dimensions $D ge 2$, and that random circuits require $O(sqrt{N})$ depth for $D=1$. Finally, we introduce an expurgation algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into additional stabilizers or gauge operators. With such targeted measurements, we can achieve sub-logarithmic depth in $Dge 2$ below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4-8 expurgated random circuits in $D=2$ dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
We introduce an approach to compute reduced density matrices for local quantum unitary circuits of finite depth and infinite width. Suppose the time-evolved state under the circuit is a matrix-product state with bond dimension $D$; then the reduced density matrix of a half-infinite system has the same spectrum as an appropriate $Dtimes D$ matrix acting on an ancilla space. We show that reduced density matrices at different spatial cuts are related by quantum channels acting on the ancilla space. This quantum channel approach allows for efficient numerical evaluation of the entanglement spectrum and Renyi entropies and their spatial fluctuations at finite times in an infinite system. We benchmark our numerical method on random unitary circuits, where many analytic results are available, and also show how our approach analytically recovers the behaviour of the kicked Ising model at the self-dual point. We study various properties of the spectra of the reduced density matrices and their spatial fluctuations in both the random and translation-invariant cases.
455 - J. Geraci , D.A. Lidar 2009
We exploit a recently constructed mapping between quantum circuits and graphs in order to prove that circuits corresponding to certain planar graphs can be efficiently simulated classically. The proof uses an expression for the Ising model partition function in terms of quadratically signed weight enumerators (QWGTs), which are polynomials that arise naturally in an expansion of quantum circuits in terms of rotations involving Pauli matrices. We combine this expression with a known efficient classical algorithm for the Ising partition function of any planar graph in the absence of an external magnetic field, and the Robertson-Seymour theorem from graph theory. We give as an example a set of quantum circuits with a small number of non-nearest neighbor gates which admit an efficient classical simulation.
We propose a quantum algorithm to solve systems of nonlinear differential equations. Using a quantum feature map encoding, we define functions as expectation values of parametrized quantum circuits. We use automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits (DQCs), thus avoiding inaccurate finite difference procedures for calculating gradients. We describe a hybrid quantum-classical workflow where DQCs are trained to satisfy differential equations and specified boundary conditions. As a particular example setting, we show how this approach can implement a spectral method for solving differential equations in a high-dimensional feature space. From a technical perspective, we design a Chebyshev quantum feature map that offers a powerful basis set of fitting polynomials and possesses rich expressivity. We simulate the algorithm to solve an instance of Navier-Stokes equations, and compute density, temperature and velocity profiles for the fluid flow in a convergent-divergent nozzle.
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا