Do you want to publish a course? Click here

Rotational effects on the negative magnetic pressure instability

115   0   0.0 ( 0 )
 Added by Illa R. Losada
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-scale instability resulting in the formation of non-uniform magnetic structures, can be excited over the scale of many turbulent eddies or convection cells. This instability is caused by a negative contribution of turbulence to the effective (mean-field) magnetic pressure and has previously been discussed in connection with the formation of active regions and perhaps sunspots. We want to understand the effects of rotation on this instability in both two and three dimensions. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic pressure instability have previously been found to be in agreement with those of direct numerical simulations. We find that the instability is suppressed already for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with propagation in the prograde direction at the equator with additional poleward migration away from the equator. The prograde rotation of the magnetic pattern near the equator is argued to be a possible explanation for the faster rotation speed of magnetic tracers found on the Sun. In the bulk of the domain, kinetic and current helicities are negative in the northern hemisphere and positive in the southern.



rate research

Read More

242 - A. A. Vidotto 2013
We perform three-dimensional numerical simulations of stellar winds of early-M dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures $p_{rm tot}$ (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planets magnetic field and $p_{rm tot}$, variations of up to a factor of $3$ in $p_{rm tot}$ (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 percent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M dwarf stars like DT~Vir, DS~Leo and GJ~182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.
Hydrostatic pressure effects on the temperature- and magnetic field dependencies of the in-plane and out-of-plane magnetization of the bi-layered perovskite Sr3Ru2O7 have been studied by SQUID magnetometer measurements under a hydrostatic helium-gas pressure. The anomalously enhanced low-temperature value of the paramagnetic susceptibility has been found to systematically decrease with increasing pressure. The effect is accompanied by an increase of the temperature Tmax of a pronounced peak of susceptibility. Thus, magnetization measurements under hydrostatic pressure reveal that the lattice contraction in the structure of Sr3Ru2O7 promotes antiferromagnetism and not ferromagnetism, contrary to the previous beliefs. The effects can be explained by the enhancement of the inter-bi-layer antiferromagnetic spin coupling, driven by the shortening of the superexchange path, and suppression, due to the band-broadening effect, of competing itinerant ferromagnetic correlations.
We use three dimensional radiation magneto-hydrodynamic simulations to study the effects of magnetic fields on the energy transport and structure of radiation pressure dominated main sequence massive star envelopes at the region of the iron opacity peak. We focus on the regime where the local thermal timescale is shorter than the dynamical timescale, corresponding to inefficient convective energy transport. We begin with initially weak magnetic fields relative to the thermal pressure, from 100-1000G in differing geometries. The unstable density inversion amplifies the magnetic field, increasing the magnetic energy density to values close to equipartition with the turbulent kinetic energy density. By providing pressure support, the magnetic fields presence significantly increases the density fluctuations in the turbulent envelope, thereby enhancing the radiative energy transport by allowing photons to diffuse out through low density regions. Magnetic buoyancy brings small scale magnetic fields to the photosphere and increases the vertical energy transport with the energy advection velocity proportional to the Alfven velocity, although in all cases we study photon diffusion still dominates the energy transport. The increased radiative and advective energy transport causes the stellar envelope to shrink by several scale heights. We also find larger turbulent velocity fluctuations compared to the purely hydrodynamic case, reaching $approx$ 100 km/s at the stellar photosphere. The photosphere also shows vertical oscillations with similar averaged velocities and periods of a few hours. The increased turbulent velocity and oscillations will have strong impacts on the line broadening and periodic signals in massive stars.
The competition between magnetic ordering and the Kondo effect in Ce2RhSi3, ordering antiferromagnetically at 7 K, is investigated by the measurements of magnetization, heat capacity and electrical resistivity on the solid solutions, Ce(2-x)La(x)RhSi3, Ce(2-y)Y(y)RhSi3, and Ce2RhSi(3-z)Ge(z), as well as by high pressure studies on this compound. The trends in the Kondo and Neel temperature variations among these alloys are compared to infer the roles of unit-cell volume and electronic structure changes. On the basis of the results, we infer that this compound lies at the peak of Doniach-magnetic-phase-diagram. The high pressure electrical resistivity data indicate that the quantum critical point for this compound is in the vicinity of 4 GPa.
The magnetic chemically peculiar (mCP) stars of the upper main sequence exhibit periodic light, magnetic, radio, and spectroscopic variations that can be adequately explained by a model of a rigidly rotating magnetized star with persistent surface structures. The majority of mCP stars rotate at strictly constant periods. However, there are a few mCP stars whose rotation periods vary on timescales of decades while the shape of their phase curves remains unchanged. In the case of CU Vir and V901 Ori, we have detected cyclic period variations. We demonstrate that the period oscillations of CU Vir may be a consequence of the interaction of the internal magnetic field and differential rotation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا