No Arabic abstract
The magnetic chemically peculiar (mCP) stars of the upper main sequence exhibit periodic light, magnetic, radio, and spectroscopic variations that can be adequately explained by a model of a rigidly rotating magnetized star with persistent surface structures. The majority of mCP stars rotate at strictly constant periods. However, there are a few mCP stars whose rotation periods vary on timescales of decades while the shape of their phase curves remains unchanged. In the case of CU Vir and V901 Ori, we have detected cyclic period variations. We demonstrate that the period oscillations of CU Vir may be a consequence of the interaction of the internal magnetic field and differential rotation.
Mercury-manganese (HgMn) stars are late-B upper main sequence chemically peculiar stars distinguished by large overabundances of heavy elements, slow rotation, and frequent membership in close binary systems. These stars lack strong magnetic fields typical of magnetic Bp stars but occasionally exhibit non-uniform surface distributions of chemical elements. The physical origin and the extent of this spot formation phenomenon remains unknown. Here we use 2-min cadence light curves of 64 HgMn stars observed by the TESS satellite during the first two years of its operation to investigate the incidence of rotational modulation and pulsations among HgMn stars. We found rotational variability with amplitudes of 0.1-3 mmag in 84 per cent of the targets, indicating ubiquitous presence of starspots on HgMn-star surfaces. Rotational period measurements reveal six fast-rotating stars with periods below 1.2 d, including one ultra-fast rotator (HD 14228) with a 0.34 d period. We also identify several HgMn stars showing multi-periodic g-mode pulsations, tidally induced variation and eclipses in binary systems.
Apparent variability of the longitudinal magnetic fields in most stars is caused by rotation, which quantitavely changes projection of the magnetic field configuration on the line of sight. This is a purely geometrical effect and is not related to possible intrinsic changes of the field. In some stars we observe changes of the magnetic phase curve with time, which means that parameters of the magnetic field change. Such changes occur in some objects in time scale of several years, which is few orders of magnitude faster than predicted by theory. Those changes imply need for improvement of the theory of magnetic field evolution. We demonstrate changes of the rotational phase curves in few stars.
We analyzed the behavior of the rotational velocity in the parent stars of extrasolar planets. Projected rotational velocity v sin i and angular momentum were combined with stellar and planetary parameters, for a unique sample of 147 stars, amounting to 184 extrasolar planets, including 25 multiple systems. Indeed, for the present working sample we considered only stars with planets detected by the radial-velocity procedure. Our analysis shows that the v sin i distribution of stars with planets along the HR Diagram follows the well established scenario for the rotation of intermediate to low main sequence stars, with a sudden decline in rotation near 1.2 Msun. The decline occurs around Teff ~ 6000 K, corresponding to the late-F spectral region. A statistical comparison of the distribution of the rotation of stars with planets and a sample of stars without planets indicates that the v sin i distribution for these two families of stars is drawn from the same population distribution function. We also found that the angular momentum of extrasolar planet parent stars follows, at least qualitatively, Krafts relation J alpha (M/Msun)^{alpha}. The stars without detected planets show a clear trend of angular momentum deficit compared to the stars with planets, in particular for masses higher than about 1.25 Msun. Stars with the largest mass planets tend to have angular momentum comparable to or higher than the Sun.
Massive star winds are important contributors to the energy, momentum and chemical enrichment of the interstellar medium. Strong, organized and predominantly dipolar magnetic fields have been firmly detected in a small subset of massive O-type stars. Magnetic massive stars are known to exhibit phase-locked variability of numerous observable quantities that is hypothesized to arise due to the presence of an obliquely rotating magnetosphere formed via the magnetic confinement of their strong outflowing winds. Analyzing the observed modulations of magnetic O-type stars is thus a key step towards the better understanding of the physical processes that occur within their magnetospheres. The dynamical processes that lead to the formation of a magnetosphere are formally solved utilizing complex MHD simulations. Recently, an Analytic Dynamical Magnetosphere (ADM) model has been developed that can quickly be employed to compute the time-averaged density, temperature and velocity gradients within a dynamical magnetosphere. Here, we exploit the ADM model to compute photometric and polarimetric observables of magnetic Of?p stars, to test geometric models inferred from magnetometry. We showcase important results on the prototypical Of?p-type star HD 191612, that lead to a better characterization of massive star wind and magnetic properties.
We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars.