Do you want to publish a course? Click here

Star Formation and AGN Activity in Galaxy Clusters from $z=1-2$: a Multi-wavelength Analysis Featuring $Herschel$/PACS

53   0   0.0 ( 0 )
 Added by Stacey Alberts
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive ($gtrsim10^{14},rm{M_{odot}}$) galaxy clusters at $1<z<1.75$. Using new, deep $Herschel$/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at $zgtrsim1.4$ is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores ($r<0.5,$Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by $zsim1$. Enhanced SFRs are found in lower mass ($10.1< log rm{M_{star}}/rm{M_{odot}}<10.8$) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from $z=0.5-2$, finding an excess AGN fraction at $zgtrsim1$, suggesting environmental triggering of AGN during this epoch. We argue that our results $-$ a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN $-$ are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.



rate research

Read More

We aim to study the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) in massive galaxy clusters. We explore the use of different AGN detection techniques with the goal of selecting AGN across a broad range of luminosities, AGN/host galaxy flux ratios, and obscuration levels. From a sample of 12 galaxy clusters at redshifts 0.5 < z < 0.9, we identify AGN candidates using optical variability from multi-epoch HST imaging, X-ray point sources in Chandra images, and mid-IR SED power-law fits through the Spitzer IRAC channels. We find 178 optical variables, 74 X-ray point sources, and 64 IR power law sources, resulting in an average of ~25 AGN per cluster. We find no significant difference between the fraction of AGN among galaxies in clusters and the percentage of similarly-detected AGN in field galaxy studies (~2.5%). This result provides evidence that galaxies are still able to fuel accretion onto their supermassive black holes, even in dense environments. We also investigate correlations between the percentage of AGN and cluster physical properties such as mass, X-ray luminosity, size, morphology class and redshift. We find no significant correlations among cluster properties and the percentage of AGN detected.
We examine the relationship between star formation and AGN activity by constructing matched samples of local ($0<z<0.6$) radio-loud and radio-quiet AGN in the $textit{Herschel}$-ATLAS fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies (HERGs, LERGs) using their emission lines and $textit{WISE}$ 22-$mu$m luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using $textit{Herschel}$ 250-$mu$m luminosity and stellar mass measurements from the SDSS$-$MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with $textit{Herschel}$ we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radio-quiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.
Nuclear starbursts and AGN activity are the main heating processes in luminous infrared galaxies (LIRGs) and their relationship is fundamental to understand galaxy evolution. In this paper, we study the star-formation and AGN activity of a sample of 11 local LIRGs imaged with subarcsecond angular resolution at radio (8.4GHz) and near-infrared ($2.2mu$m) wavelengths. This allows us to characterize the central kpc of these galaxies with a spatial resolution of $simeq100$pc. In general, we find a good spatial correlation between the radio and the near-IR emission, although radio emission tends to be more concentrated in the nuclear regions. Additionally, we use an MCMC code to model their multi-wavelength spectral energy distribution (SED) using template libraries of starburst, AGN and spheroidal/cirrus models, determining the luminosity contribution of each component, and finding that all sources in our sample are starburst-dominated, except for NGC6926 with an AGN contribution of $simeq64$%. Our sources show high star formation rates ($40$ to $167M_odotmathrm{yr}^{-1}$), supernova rates (0.4 to $2.0mathrm{SN}mathrm{yr}^{-1}$), and similar starburst ages (13 to $29mathrm{Myr}$), except for the young starburst (9Myr) in NGC6926. A comparison of our derived star-forming parameters with estimates obtained from different IR and radio tracers shows an overall consistency among the different star formation tracers. AGN tracers based on mid-IR, high-ionization line ratios also show an overall agreement with our SED model fit estimates for the AGN. Finally, we use our wide-band VLA observations to determine pixel-by-pixel radio spectral indices for all galaxies in our sample, finding a typical median value ($alphasimeq-0.8$) for synchrotron-powered LIRGs.
We investigate the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi- wavelength surveys covering regions centered on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. AGN host galaxies also show a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the green valley between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star-formation in the hosts. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts. This may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy than the intracluster medium and/or local galaxy environment.
160 - Georgios E. Magdis 2010
We present a multi-wavelength, UV-to-radio analysis for a sample of massive (M$_{ast}$ $sim$ 10$^{10}$ M$_odot$) IRAC- and MIPS 24$mu$m-detected Lyman Break Galaxies (LBGs) with spectroscopic redshifts z$sim$3 in the GOODS-North field (L$_{rm UV}$$>1.8times$L$^{ast}_{z=3}$). For LBGs without individual 24$mu$m detections, we employ stacking techniques at 24$mu$m, 1.1mm and 1.4GHz, to construct the average UV-to-radio spectral energy distribution and find it to be consistent with that of a Luminous Infrared Galaxy (LIRG) with L$rm_{IR}$=4.5$^{+1.1}_{-2.3}$$times 10^{11}$ L$_{odot}$ and a specific star formation rate (SSFR) of 4.3 Gyr$^{-1}$ that corresponds to a mass doubling time $sim$230 Myrs. On the other hand, when considering the 24$mu$m-detected LBGs we find among them galaxies with L$rm_{IR}> 10^{12}$ L$_{odot}$, indicating that the space density of $zsim$3 UV-selected Ultra-luminous Infrared Galaxies (ULIRGs) is $sim$(1.5$pm$0.5)$times 10^{-5}$ Mpc$^{-3}$. We compare measurements of star formation rates (SFRs) from data at different wavelengths and find that there is tight correlation (Kendalls $tau >$ 99.7%) and excellent agreement between the values derived from dust-corrected UV, mid-IR, mm and radio data for the whole range of L$rm_{IR}$ up to L$rm_{IR}$ $sim$ 10$^{13}$ L$_{odot}$. This range is greater than that for which the correlation is known to hold at z$sim$2, possibly due to the lack of significant contribution from PAHs to the 24$mu$m flux at $zsim$3. The fact that this agreement is observed for galaxies with L$rm_{IR}$ $>$ 10$^{12}$ L$_{odot}$ suggests that star-formation in UV-selected ULIRGs, as well as the bulk of star-formation activity at this redshift, is not embedded in optically thick regions as seen in local ULIRGs and submillimeter-selected galaxies at $z=2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا