Do you want to publish a course? Click here

The Wave-Driver System of the Off-Disk Coronal Wave 17 January 2010

115   0   0.0 ( 0 )
 Added by Manuela Temmer
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the 17 January 2010 flare-CME-wave event by using STEREO/SECCHI EUVI and COR1 data. The observational study is combined with an analytic model which simulates the evolution of the coronal-wave phenomenon associated with the event. From EUV observations, the wave signature appears to be dome shaped having a component propagating on the solar surface (v~280 km s-1) as well as off-disk (v~600 km s-1) away from the Sun. The off-disk dome of the wave consists of two enhancements in intensity, which conjointly develop and can be followed up to white-light coronagraph images. Applying an analytic model, we derive that these intensity variations belong to a wave-driver system with a weakly shocked wave, initially driven by expanding loops, which are indicative of the early evolution phase of the accompanying CME. We obtain the shock standoff distance between wave and driver from observations as well as from model results. The shock standoff distance close to the Sun (<0.3 Rs above the solar surface) is found to rapidly increase with values of ~0.03-0.09 Rs which give evidence of an initial lateral (over-)expansion of the CME. The kinematical evolution of the on-disk wave could be modeled using input parameters which require a more impulsive driver (t=90 s, a=1.7 km s-2) compared to the off-disk component (t=340 s, a=1.5 km s-2).



rate research

Read More

154 - I.W. Kienreich , M. Temmer , 2009
We present the first observations of a global coronal wave (EIT wave) from the two Solar Terrestrial Relations Observatory (STEREO) satellites in quadra- ture. The waves initiation site was at the disk center in STEREO-B and precisely on the limb in STEREO-A. These unprecedented observations from the STEREO Extreme Ultraviolet Imaging (EUVI) instruments enable us to gain insight into the waves kinematics, initiation and 3D structure. The wave propagates globally over the whole solar hemisphere visible to STEREO-B with a constant velocity of 263+/-16 km/s. From the two STEREO observations we derive a height of the wave in the range of 80-100 Mm. Comparison of the wave kinematics with the early phase of the erupting CME structure indicates that the wave is initiated by the CME lateral expansion, and then propagates freely with a velocity close to the fast magnetosonic speed in the quiet solar corona.
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength EUV images of CR2107 with the observations from STEREO/EUVI and SDO/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in proximity of active regions intensifies the dissipation and observable emission sufficiently.
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magneto-hydrodynamics (MHD) code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Suns corona.
We performed 2.5D magnetohydrodynamic (MHD) simulations showing the propagation of fast-mode MHD waves of different initial amplitudes and their interaction with a coronal hole (CH), using our newly developed numerical code. We find that this interaction results in, first, the formation of reflected, traversing and transmitted waves (collectively, secondary waves) and, second, in the appearance of stationary features at the CH boundary. Moreover, we observe a density depletion that is moving in the opposite direction to the incoming wave. We find a correlation between the initial amplitude of the incoming wave and the amplitudes of the secondary waves as well as the peak values of the stationary features. Additionally, we compare the phase speed of the secondary waves and the lifetime of the stationary features to observations. Both effects obtained in the simulation, the evolution of secondary waves, as well as the formation of stationary fronts at the CH boundary, strongly support the theory that coronal waves are fast-mode MHD waves.
In the present work, we test the predictions of the AWSoM model, a global extended-MHD model capable of calculating the propagation and turbulent dissipation of Alfven waves in any magnetic topology, against high resolution spectra of the quiescent off-disk solar corona. Wave dissipation is the only heating mechanism assumed in this model. Combining 3D model results with the CHIANTI atomic database, we were able to create synthetic line-of-sight spectra which include the effects of emission line broadening due to both thermal and wave-related non-thermal motions. To the best of our knowledge this is the first time a global model is used to obtain synthetic non-thermal line broadening. We obtained a steady-state solution driven by a synoptic magnetogram and compared the synthetic spectra with SUMER observations of a quiescent area above the solar west limb extending between 1.04 and 1.34 solar radii at the equator. Both the predicted line widths and the total line fluxes were consistent with the observations for 5 different ions. Using the 3D solution, we were able to locate the region that contributes the most to the emission used for measuring electron properties; we found that region to be a pseudo-streamer, whose modeled electron temperature and density are consistent with the measured ones. We conclude that the turbulent dissipation assumed in the AWSoM model can simultaneously account for the observed heating rate and the non-dissipated wave energy observed in this region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا