Do you want to publish a course? Click here

Long Duration X-Ray Flash and X-Ray Rich Gamma Ray Burst from Low Mass Population III Star

201   0   0.0 ( 0 )
 Added by Daisuke Nakauchi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than $sim 100 M_{odot}$ but typically $sim 40M_{odot}$. By self-consistently considering the jet generation and propagation in the envelope of these low mass Pop III stars, we find that a Pop III blue super giant star has the possibility to raise a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characters of Pop III GRBs and predict that Pop III GRBs have the duration of $sim 10^5$ sec in the observer frame and the peak luminosity of $sim 5 times 10^{50} {rm erg} {rm sec}^{-1}$. Assuming that the $E_p-L_p$ (or $E_p-E_{gamma, rm iso}$) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls $sim$ a few keV (or $sim 100$ keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the $E_p-E_{gamma, rm iso}$ correlation holds, we have the possibility to detect Pop III GRBs at $z sim 9$ as long duration X-ray rich GRBs by EXIST. On the other hand, if the $E_p-L_p$ correlation holds, we have the possibility to detect Pop III GRBs up to $z sim 19$ as long duration X-ray flashes by Lobster.



rate research

Read More

Because massive, low-metallicity population III (PopIII) stars may produce very powerful long gamma-ray bursts (LGRBs), high-redshift GRB observations could probe the properties of the first stars. We analyze the correlation between early PopIII stars and LGRBs by using cosmological N-body/hydrodynamical simulations, which include detailed chemical evolution, cooling, star formation, feedback effects and the transition between PopIII and more standard population I/II (PopII/I) stars. From the Swift observed rate of LGRBs, we estimate the fraction of black holes that will produce a GRB from PopII/I stars to be in the range 0.028<f_{GRB}<0.140, depending on the assumed upper metallicity of the progenitor. Assuming that as of today no GRB event has been associated to a PopIII star, we estimate the upper limit for the fraction of LGRBs produced by PopIII stars to be in the range 0.006<f_{GRB}<0.022. When we apply a detection threshold compatible with the BAT instrument, we find that the expected fraction of PopIII GRBs (GRB3) is ~10% of the full LGRB population at z>6, becoming as high has 40% at z>10. Finally, we study the properties of the galaxies hosting our sample of GRB3. We find that the average metallicity of the galaxies hosting a GRB3 is typically higher than the critical metallicity used to select the PopIII stars, due to the efficiency in polluting the gas above such low values. We also find that the highest probability of finding a GRB3 is within galaxies with a stellar mass <10^7 Msun, independently from the redshift.
313 - John Heise 2001
X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very similar to the x-ray counterparts of GRBs and account for some of the Fast X-ray Transient events seen in almost every x-ray satellite. We review their X-ray properties and show that x-ray flashes are in fact very soft, x-ray rich, untriggered gamma ray bursts, in which the peak energy in 2-10 keV x-rays could be up to a factor of 100 larger than the peak energy in the 50-300 keV gamma ray range. The frequency is ~100 per year.
Gamma-ray bursts (GRBs) have been phenomenologically classified into long and short populations based on the observed bimodal distribution of duration. Multi-wavelength and multi-messenger observations in recent years have revealed that in general long GRBs originate from massive star core collapse events, whereas short GRBs originate from binary neutron star mergers. It has been known that the duration criterion is sometimes unreliable, and multi-wavelength criteria are needed to identify the physical origin of a particular GRB. Some apparently long GRBs have been suggested to have a neutron star merger origin, whereas some apparently short GRBs have been attributed to genuinely long GRBs whose short, bright emission is slightly above the detectors sensitivity threshold. Here we report the comprehensive analysis of the multi-wavelength data of a bright short GRB 200826A. Characterized by a sharp pulse, this burst shows a duration of 1 second and no evidence of an underlying longer-duration event. Its other observational properties such as its spectral behaviors, total energy, and host galaxy offset, are, however, inconsistent with those of other short GRBs believed to originate from binary neutron star mergers. Rather, these properties resemble those of long GRBs. This burst confirms the existence of short duration GRBs with stellar core-collapse origin, and presents some challenges to the existing models.
85 - A. Panaitescu 2020
We derive basic analytical results for the timing and decay of the GRB-counterpart and delayed-afterglow light-curves for a brief emission episode from a relativistic surface endowed with angular structure, consisting of a uniform Core of size theta_c (Lorentz factor Gamma_c and surface emissivity i_nu are angle-independent) and an axially-symmetric power-law Envelope (Gamma ~ theta^{-g}). In this Large-Angle Emission (LAE) model, radiation produced during the prompt emission phase (GRB) at angles theta > theta_c arrives at observer well after the burst (delayed emission). The dynamical time-range of the very fast-decaying GRB tail and of the flat afterglow plateau, and the morphology of GRB counterpart/afterglow, are all determined by two parameters: the Cores parameter Gamma_c*theta_c and the Envelopes Lorentz factor index g, leading to three types of light-curves that display three post-GRB phases (type 1: tail, plateau/slow-decay, post-plateau/normal-decay), two post-GRB phases (type 2: tail and fast-decay), or just one (type 3: normal decay). We show how X-ray light-curve features can be used to determine Core and Envelope dynamical and spectral parameters. Testing of the LAE model is done using the Swift/XRT X-ray emission of two afterglows of type 1 (060607A, 061121), one of type 2 (061110A), and one of type 3 (061007). We find that the X-ray afterglows with plateaus require an Envelope Lorentz factor Gamma ~ theta^{-2} and a comoving-frame emissivity i_nu ~ theta^2, thus, for a typical afterglow spectrum F_nu ~ nu^{-1}, the lab-frame energy release is uniform over the emitting surface.
136 - R. Hascoet 2015
Bright X-ray flares are routinely detected by the Swift satellite during the early afterglow of gamma-ray bursts, when the explosion ejecta drives a blast wave into the external medium. We suggest that the flares are produced as the reverse shock propagates into the tail of the ejecta. The ejecta is expected to contain a few dense shells formed at an earlier stage of the explosion. We show an example of how such dense shells form and describe how the reverse shock interacts with them. A new reflected shock is generated in this interaction, which produces a short-lived X-ray flare. The model provides a natural explanation for the main observed features of the X-ray flares --- the fast rise, the steep power-law decline, and the characteristic peak duration Delta t /t= (0.1-0.3).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا