Do you want to publish a course? Click here

First Light for the First Station of the Long Wavelength Array

254   0   0.0 ( 0 )
 Added by Greg Taylor
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first station of the Long Wavelength Array (LWA1) was completed in April 2011 and is currently performing observations resulting from its first call for proposals in addition to a continuing program of commissioning and characterization observations. The instrument consists of 258 dual-polarization dipoles, which are digitized and combined into beams. Four independently-steerable dual-polarization beams are available, each with two tunings of 16 MHz bandwidth that can be independently tuned to any frequency between 10 MHz and 88 MHz. The system equivalent flux density for zenith pointing is ~3 kJy and is approximately independent of frequency; this corresponds to a sensitivity of ~5 Jy/beam (5sigma, 1 s); making it one of the most sensitive meter-wavelength radio telescopes. LWA1 also has two transient buffer modes which allow coherent recording from all dipoles simultaneously, providing instantaneous all-sky field of view. LWA1 provides versatile and unique new capabilities for Galactic science, pulsar science, solar and planetary science, space weather, cosmology, and searches for astrophysical transients. Results from LWA1 will detect or tightly constrain the presence of hot Jupiters within 50 parsecs of Earth. LWA1 will provide excellent resolution in frequency and in time to examine phenomena such as solar bursts, and pulsars over a 4:1 frequency range that includes the poorly understood turnover and steep-spectrum regimes. Observations to date have proven LWA1s potential for pulsar observing, and just a few seconds with the completed 256-dipole LWA1 provide the most sensitive images of the sky at 23 MHz obtained yet. We are operating LWA1 as an open skies radio observatory, offering ~2000 beam-hours per year to the general community.



rate research

Read More

119 - Patricia Henning 2010
The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Upon completion, LWA will consist of 53 phased array stations distributed over a region about 400 km in diameter in the state of New Mexico. Each station will consist of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5 sigma, 8 MHz, 2 polarizations, 1 hr, zenith) in 20-80 MHz; with resolution and field of view of (8, 8 deg) and (2,2 deg) at 20 MHz and 80 MHz, respectively. All 256 dipole antennas are in place for the first station of the LWA (called LWA-1), and commissioning activities are well underway. The station is located near the core of the EVLA, and is expected to be fully operational in early 2011.
67 - G.B. Taylor 2016
Rotating Radio Transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 MHz and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, 2 sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a low detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to the higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.
125 - T. E. Clarke 2014
New observations of Jupiters decametric radio emissions have been made with the Long Wavelength Array Station 1 (LWA1) which is capable of making high quality observations as low as 11 MHz. Full Stokes parameters were determined for bandwidths of 16 MHz. Here we present the first LWA1 results for the study of six Io-related events at temporal resolutions as fine as 0.25 ms. LWA1 data show excellent spectral detail in Jovian DAM such as simultaneous left hand circular (LHC) and right hand circular (RHC) polarized Io-related arcs and source envelopes, modulation lane features, S-bursts structures, narrow band N-events, and interactions between S-bursts and N-events. The sensitivity of the LWA1 combined with the low radio frequency interference environment allow us to trace the start of the LHC Io-C source region to much earlier CMLIII than typically found in the literature. We find the Io-C starts as early as CMLIII = 230 degrees at frequencies near 11 MHz. This early start of the Io-C emission may be valuable for refining models of the emission mechanism. We also detect modulation lane structures that appear continuous across LHC and RHC emissions, suggesting that both polarizations may originate from the same hemisphere of Jupiter. We present a study of rare S-bursts detected during an Io-D event and show drift rates are consistent with those from other Io-related sources. Finally, S-N burst events are seen in high spectral and temporal resolution and our data strongly support the co-spatial origins of these events.
The Long Wavelength Array Software Library (LSL) is a Python module that provides a collection of utilities to analyze and export data collected at the first station of the Long Wavelength Array, LWA1. Due to the nature of the data format and large-N ($gtrsim$100 inputs) challenges faced by the LWA, currently available software packages are not suited to process the data. Using tools provided by LSL, observers can read in the raw LWA1 data, synthesize a filter bank, and apply incoherent de-dispersion to the data. The extensible nature of LSL also makes it an ideal tool for building data analysis pipelines and applying the methods to other low frequency arrays.
The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond continuously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure at the Observatoire de Paris-Meudon, where it observed the first Cherenkov light detected by a prototype instrument for CTA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا