No Arabic abstract
We present 2+1 flavor Lattice QCD calculations of the nucleon scalar and tensor charges. Using the BMW clover-improved Wilson action with pion masses between 150 and 350 MeV and three source-sink separations between 0.9 and 1.4 fm, we achieve good control over excited-state contamination and extrapolation to the physical pion mass. As a consistency check, we also present results from calculations using unitary domain wall fermions with pion masses between 300 and 400 MeV, and using domain wall valence quarks and staggered sea quarks with pion masses between 300 and 600 MeV.
Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_pisim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor charges of nuclei constrain their spin content, integrated transversity and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. Significant nuclear modifications are found, with particularly large, O(10%), effects in the scalar charges. Typically, these nuclear effects reduce the effective charge of the nucleon (quenching), although in some cases an enhancement is not excluded. Given the size of the nuclear modifications of the scalar charges resolved here, contributions from correlated multi-nucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings $aapprox$ 0.116 and 0.093 fm. We use a wide range of source-sink separations - eight values ranging from roughly 0.4 to 1.4 fm on the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble - which allows us to perform an extensive study of excited-state effects using different analysis and fit strategies. To determine the renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI-MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are computed in the MS-bar scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%, $g_T=0.972(41)$ and $g_A=1.265(49)$. The resulting scalar charge, $g_S=0.927(303)$, has a much larger uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the lattice spacing.
We determine the nucleon axial, scalar and tensor charges within lattice Quantum Chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing $a=0.094$~fm and the third with $a=0.08$~fm includes in addition the strange and charm quarks in the sea. After comparing the results among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble. For the nucleon isovector axial charge we find $1.286(23)$ in agreement with the experimental value. We provide the flavor decomposition of the intrinsic spin $frac{1}{2}DeltaSigma^q$ carried by quarks in the nucleon obtaining for the up, down, strange and charm quarks $frac{1}{2}DeltaSigma^{u}=0.431(8)$, $frac{1}{2}DeltaSigma^{d}=-0.212(8)$, $frac{1}{2}DeltaSigma^{s}=-0.023(4)$ and $frac{1}{2}DeltaSigma^{c}=-0.005(2)$, respectively. The corresponding values of the tensor and scalar charges for each quark flavor are also evaluated providing valuable input for experimental searches for beyond the standard model physics. In addition, we extract the nucleon $sigma$-terms and find for the light quark content $sigma_{pi N}=41.6(3.8)$~MeV and for the strange $sigma_{s}=45.6(6.2)$~MeV. The y-parameter that is used in phenomenological studies we find $y=0.078(7)$.
We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with $N_f=2$ flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are $g_S^u = 5.20(42)(15)(12)$, $g_S^d = 4.27(26)(15)(12)$, $g_S^s=0.33(7)(1)(4)$, $g_S^c=0.062(13)(3)(5)$ and for the tensor charges $g_T^u = 0.782(16)(2)(13)$, $g_T^d = -0.219(10)(2)(13)$, $g_T^s=-0.00319(69)(2)(22)$, $g_T^c=-0.00263(269)(2)(37)$ in the $overline{rm MS}$ scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states.
We present the results of a lattice study of light-cone distribution amplitudes (DAs) of the nucleon and negative parity nucleon resonances using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to m_pi = 150 MeV. We find that the three valence quarks in the proton share their momentum in the proportion 37% : 31% : 31%, where the larger fraction corresponds to the u-quark that carries proton helicity, and determine the value of the wave function at the origin in position space, which turns out to be small compared to the existing estimates based on QCD sum rules. Higher-order moments are constrained by our data and are all compatible with zero within our uncertainties. We also calculate the normalization constants of the higher-twist DAs that are related to the distribution of quark angular momentum. Furthermore, we use the variational method and customized parity projection operators to study the states with negative parity. In this way we are able to separate the contributions of the two lowest states that, as we argue, possibly correspond to N*(1535) and a mixture of N*(1650) and the pion-nucleon continuum, respectively. It turns out that the state that we identify with N*(1535) has a very different DA as compared to both the second observed negative parity state and the nucleon, which may explain the difference in the decay patterns of N*(1535) and N*(1650) observed in experiment.