Do you want to publish a course? Click here

Lightcone mock catalogues from semi-analytic models of galaxy formation - I. Construction and application to the BzK colour selection

186   0   0.0 ( 0 )
 Added by Alex Merson
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a method for constructing end-to-end mock galaxy catalogues using a semi-analytical model of galaxy formation, applied to the halo merger trees extracted from a cosmological N-body simulation. The mocks that we construct are lightcone catalogues, in which a galaxy is placed according to the epoch at which it first enters the past lightcone of the observer, and incorporate the evolution of galaxy properties with cosmic time. We determine the position between the snapshot outputs at which a galaxy enters the observers lightcone by interpolation. As an application, we consider the effectiveness of the BzK colour selection technique, which was designed to isolate galaxies in the redshift interval 1.4<z<2.5. The mock catalogue is in reasonable agreement with the observed number counts of all BzK galaxies, as well as with the observed counts of the subsample of BzKs that are star-forming galaxies. We predict that over 75 per cent of the model galaxies with K_{AB}<=23, and 1.4<z<2.5, are selected by the BzK technique. Interloper galaxies, outside the intended redshift range, are predicted to dominate bright samples of BzK galaxies (i.e. with K_{AB}<=21). Fainter K-band cuts are necessary to reduce the predicted interloper fraction. We also show that shallow B-band photometry can lead to confusion in classifying BzK galaxies as being star-forming or passively evolving. Overall, we conclude that the BzK colour selection technique is capable of providing a sample of galaxies that is representative of the 1.4<z<2.5 galaxy population.



rate research

Read More

76 - Mark R.Lovell 2015
The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, $L_6$, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than $2times10^{12}M_{odot}$ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of $L_6$ for $M_sle 8$~keV. We also show that the range of $L_6$ that is in best agreement with the 3.5~keV line (if produced by decays of 7~keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than $1.5times10^{12}M_{odot}$. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel~et~al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.
It is now possible for hydrodynamical simulations to reproduce a representative galaxy population. Accordingly, it is timely to assess critically some of the assumptions of traditional semi-analytic galaxy formation models. We use the Eagle simulations to assess assumptions built into the Galform semi-analytic model, focussing on those relating to baryon cycling, angular momentum and feedback. We show that the assumption in Galform that newly formed stars have the same specific angular momentum as the total disc leads to a significant overestimate of the total stellar specific angular momentum of disc galaxies. In Eagle, stars form preferentially out of low specific angular momentum gas in the interstellar medium (ISM) due to the assumed gas density threshold for stars to form, leading to more realistic galaxy sizes. We find that stellar mass assembly is similar between Galform and Eagle but that the evolution of gas properties is different, with various indications that the rate of baryon cycling in Eagle is slower than is assumed in Galform. Finally, by matching individual galaxies between Eagle and Galform, we find that an artificial dependence of AGN feedback and gas infall rates on halo mass doubling events in Galform drives most of the scatter in stellar mass between individual objects. Put together our results suggest that the Galform semi-analytic model can be significantly improved in light of recent advances.
124 - C. J. Short , P. A. Thomas 2009
We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al. (2008), who arrived at the same conclusion on the basis of purely semi-analytic reasoning.
We establish a practical method for the joint analysis of anisotropic galaxy two- and three-point correlation functions (2PCF and 3PCF) on the basis of the decomposition formalism of the 3PCF using tri-polar spherical harmonics. We perform such an analysis with MultiDark Patchy mock catalogues to demonstrate and understand the benefit of the anisotropic 3PCF. We focus on scales above $80 h^{-1},{rm Mpc}$, and use information from the shape and the baryon acoustic oscillation (BAO) signals of the 2PCF and 3PCF. We also apply density field reconstruction to increase the signal-noise ratio of BAO in the 2PCF measurement, but not in the 3PCF measurement. In particular, we study in detail the constraints on the angular diameter distance and the Hubble parameter. We build a model of the bispectrum or 3PCF that includes the nonlinear damping of the BAO signal in redshift space. We carefully account for various uncertainties in our analysis including theoretical models of the 3PCF, window function corrections, biases in estimated parameters from the fiducial values, the number of mock realizations to estimate the covariance matrix, and bin size. The joint analysis of the 2PCF and 3PCF monopole and quadrupole components shows a $30%$ a nd $20%$ improvement in Hubble parameter constraints before and after reconstruction of the 2PCF measurements, respectively, compared to the 2PCF analysis alone. This study clearly shows that the anisotropic 3PCF increases cosmological information from galaxy surveys and encourages further development of the modeling of the 3PCF on smaller scales than we consider.
We describe the construction of a suite of galaxy cluster mock catalogues from N-body simulations, based on the properties of the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. Our procedure is based on the measurements of the cluster abundance, and involves the calibration of the underlying scaling relation linking the mass of dark matter haloes to the cluster X-ray luminosity determined in the emph{ROSAT} energy band $0.1-2.4$ keV. In order to reproduce the observed abundance in the luminosity range probed by the REFLEX II X-ray luminosity function ($0.01<L_{X}/(10^{44}{rm erg},{rm s}^{-1}h^{-2})<10$), a mass-X ray luminosity relation deviating from a simple power law is required. We discuss the dependence of the calibration of this scaling relation on the X-ray luminosity and the definition of halo masses and analyse the one- and two-point statistical properties of the mock catalogues. Our set of mock catalogues provides samples with self-calibrated scaling relations of galaxy clusters together with inherent properties of flux-limited surveys. This makes them a useful tool to explore different systematic effects and statistical methods involved in constraining both astrophysical and cosmological information from present and future galaxy cluster surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا