Do you want to publish a course? Click here

Observation of Topological Crystalline Insulator phase in the lead tin chalcogenide Pb1-xSnxTe material class

160   0   0.0 ( 0 )
 Added by M Zahid Hasan
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform systematic angle-resolved photoemission spectroscopic measurements on the lead tin telluride Pb1-xSnxTe pseudobinary alloy system. We show that the (001) crystalline surface, which is a crystalline surface symmetric about the (110) mirror planes of the Pb1-xSnxTe crystal, pos- sesses four metallic surface states within its surface Brillouin zone. Our systematic Fermi surface and band topology measurements show that the observed Dirac-like surface states lie on the symmetric momentum-space cuts. We further show that upon going to higher electron binding energies, the surface states isoenergetic countours in close vicinity of each X point are observed to hybridize with each other, leading to a Fermi surface fractionalization and the Lifshitz transition. In addition, systematic incident photon energy dependent measurements are performed, which enable us to un- ambiguously identify the surface states from the bulk bands. These systematic measurements of the surface and bulk electronic structure on Pb1-xSnxTe, supported by our first principles calculation results, for the first time, show that the Pb1-xSnxTe system belongs to the topological crystalline insulator phase due to the four band



rate research

Read More

Dirac fermions in condensed matter physics hold great promise for novel fundamental physics, quantum devices and data storage applications. IV-VI semiconductors, in the inverted regime, have been recently shown to exhibit massless topological surface Dirac fermions protected by crystalline symmetry, as well as massive bulk Dirac fermions. Under a strong magnetic field (B), both surface and bulk states are quantized into Landau levels that disperse as B^1/2, and are thus difficult to distinguish. In this work, magneto-optical absorption is used to probe the Landau levels of high mobility Bi-doped Pb0.54Sn0.46Te topological crystalline insulator (111)-oriented films. The high mobility achieved in these thin film structures allows us to probe and distinguish the Landau levels of both surface and bulk Dirac fermions and extract valuable quantitative information about their physical properties. This work paves the way for future magnetooptical and electronic transport experiments aimed at manipulating the band topology of such materials.
In the recently discovered topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with a unique set of characteristics. Among the theoretical predictions for TCIs is the possibility of imparting mass to the massless Dirac fermions by breaking crystal symmetry, as well as a Lifshitz transition with a change of Fermi surface topology. Here we report high resolution scanning tunneling microscopy studies of a TCI, Pb1-xSnxSe. We demonstrate the formation of zero mass Dirac fermions protected by crystal symmetry and the mechanism of mass generation via symmetry breaking, which constitute the defining characteristics of TCIs. In addition, we show two distinct regimes of fermiology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.
We report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI) Pb1-xSnxSe as a function of various material parameters including composition x, temperature T and crystal structure. Our spectroscopic data demonstrate the electronic groundstate condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states response to circularly polarized light. Our results show that each material parameter can tune the system between trivial and topological phase in a distinct way unlike as seen in Bi2Se3 and related compounds, leading to a rich and unique topological phase diagram. Our systematic studies of the TCI Pb1-xSnxSe are valuable materials guide to realize new topological phenomena.
We report on an infrared magneto-spectroscopy study of Pb$_{1-x}$Sn$_x$Se, a topological crystalline insulator. We have examined a set of samples, all in the inverted regime of electronic bands, with the tin composition varying from $x=0.2$ to $0.33$. Our analysis shows that the observed response, composed of a series of interband inter-Landau level excitations, can be interpreted and modelled using the relativistic-like Hamiltonian for three-dimensional massive Dirac electrons, expanded to include diagonal quadratic terms that impose band inversion. In our data, we have not found any clear signature of massless electron states that are present on the surface of Pb$_{1-x}$Sn$_x$Se crystals in the inverted regime. Reasons for this unexpected result are discussed.
We present angle resolved photoemission spectroscopy measurements of the surface states on in-situ grown (111) oriented films of Pb$_{1-x}$Sn$_{x}$Se, a three dimensional topological crystalline insulator. We observe surface states with Dirac-like dispersion at $bar{Gamma}$ and $bar{M}$ in the surface Brillouin zone, supporting recent theoretical predictions for this family of materials. We study the parallel dispersion isotropy and Dirac-point binding energy of the surface states, and perform tight-binding calculations to support our findings. The relative simplicity of the growth technique is encouraging, and suggests a clear path for future investigations into the role of strain, vicinality and alternative surface orientations in (Pb,Sn)Se compounds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا