Do you want to publish a course? Click here

Substituent Effects on the Spin-Transition Temperature in Complexes with Tris(pyrazolyl) Ligands

108   0   0.0 ( 0 )
 Added by Hauke Paulsen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Iron (II) complexes with substituted tris(pyrazolyl) ligands, which exhibit a thermally driven transition from a low-spin state at low temperatures to a high-spin state at elevated temperatures, have been studied by Mossbauer spectroscopy and magnetic susceptibility measurements. From the observed spectra the molar high-spin fraction and the transition temperature have been extracted. All substituents, except for bromine, lead to a decrease of the transition temperature. Density functional calculations have been carried out to compare the experimentally observed shifts of the transition temperature with those derived from theory.



rate research

Read More

Although ligand-binding sites in many proteins contain a high number density of charged side chains that can polarize small organic molecules and influence binding, the magnitude of this effect has not been studied in many systems. Here, we use a quantum mechanics/molecular mechanics (QM/MM) approach in which the ligand is the QM region to compute the ligand polarization energy of 286 protein-ligand complexes from the PDBBind Core Set (release 2016). We observe that the ligand polarization energy is linearly correlated with the magnitude of the electric field acting on the ligand, the magnitude of the induced dipole moment, and the classical polarization energy. The influence of protein and cation charges on the ligand polarization diminishes with the distance and is below 2 kcal/mol at 9 $unicode{x212B}$ and 1 kcal/mol at 12 $unicode{x212B}$. Considering both polarization and solvation appears essential to computing negative binding energies in some crystallographic complexes. Solvation, but not polarization, is essential for achieving moderate correlation with experimental binding free energies.
We present an extension of Alchemical Transfer Method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional as well as scaffold-hopping alchemical transformations. The method, named ATM-RBFE, implemented in the free and open-source OpenMM molecular simulation package, aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than is currently available. The method is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly using a single solvent box prepared using conventional setup tools, without splitting of electrostatic and non-electrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against a benchmark set of estrogen receptor $alpha$ complexes. In each case, the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies, reference literature values as well as experimental measurements.
This Perspective describes current computational efforts in the field of simulating photodynamics of transition metal complexes. We present the typical workflows and feature the strengths and limitations of the different contemporary approaches. From electronic structure methods suitable to describe transition metal complexes to approaches able to simulate their nuclear dynamics under the effect of light, we lay particular attention to build a bridge between theory and experiment by critically discussing the different models commonly adopted in the interpretation of spectroscopic experiments and the simulation of particular observables. Thereby, we review all the studies of excited state dynamics on transition metal complexes, both in gas phase and in solution from reduced to full dimensionality
Eu$^{2+}$ is used to replace toxic Pb$^{2+}$ in metal halide perovskite nanocrystals (NCs). The synthesis implies injection of cesium oleate into a solution of europium (II) bromide at an experimentally determined optimum temperature of 130C and a reaction time of 60s. Structural analysis indicates the formation of spherical CsEuBr$_3$ nanoparticles with a mean size of 43nm. Using EuI$_2$ instead of EuBr$_2$ leads to the formation of 18nm CsI nanoparticles, while EuCl$_2$ does not show any reaction with cesium oleate forming 80nm EuCl2 nanoparticles. The obtained CsEuBr3 NCs exhibit bright blue emission at 413nm (FWHM 30 nm) with a room temperature photoluminescence quantum yield of 39%. The emission originates from the Laporte-allowed 4f7-4f65d1 transition of Eu$^{2+}$ and shows a PL decay time of 263ns. The long-term stability of the optical properties is observed, making inorganic lead-free CsEuBr$_3$ NCs promising deep blue emitters for optoelectronics.
Density functional theory (DFT) provides a theoretical framework for efficient and fairly accurate calculations of the electronic structure of molecules and crystals. The main features of density functional theory are described and DFT methods are compared with wavefunction-based methods like the Hartree-Fock approach. Some recent applications of DFT to spin crossover complexes are reviewed, e.g., the calculation of Mossbauer parameters, of vibrational modes and of differences of entropy, vibrational energy, and total electronic energy between high-spin and low-spin isomers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا