No Arabic abstract
Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr$_3$Ir$_2$O$_7$ is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined $T_{AF}=280$ K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below $T^{*}approx70$ K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d $J_{eff}=1/2$ Mott phase.
Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr$_3$Cr$_2$O$_7$, the $n=2$ member of the Ruddlesden-Popper Sr$_{n+1}$Cr$_n$O$_{3n+1}$ system. The model consists of effective $t_{2g}$ orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.
X-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate Sr$_3$Ir$_2$O$_7$. We find that the magnetic interactions close to the N{e}el temperature $T_N$ = 283.4(2) K are three-dimensional. This contrasts with previous studies which suggest two-dimensional behaviour like Sr$_2$IrO$_4$. Violation of the Harris criterion ($d u>2$) means that weak disorder becomes relevant. This leads a rounding of the antiferromagnetic phase transition at $T_N$, and modifies the critical exponents relative to the clean system. Specifically, we determine that the critical behaviour of Sr$_3$Ir$_2$O$_7$ is representative of the diluted 3D Ising universality class.
Oxides containing iridium ions display a range of magnetic and conducting properties that depend on the delicate balance between interactions and are controlled, at least in part, by the details of the crystal architecture. We have used muon-spin rotation ($mu$SR) to study the local field in four iridium oxides, Ca$_4$IrO$_6$, Ca$_5$Ir$_3$O$_{12}$, Sr$_3$Ir$_2$O$_7$ and Sr$_2$IrO$_4$, which show contrasting behavior. Our $mu$SR data on Ca$_4$IrO$_6$ and Ca$_5$Ir$_3$O$_{12}$ are consistent with conventional antiferromagnetism where quasistatic magnetic order develops below $T_{rm N}=13.85(6)$ K and 7.84(7) K respectively. A lower internal field is observed for Ca$_5$Ir$_3$O$_{12}$, as compared to Ca$_4$IrO$_6$ reflecting the presence of both Ir$^{4+}$ and Ir$^{5+}$ ions, resulting in a more magnetically dilute structure. Muon precession is only observed over a restricted range of temperature in Sr$_3$Ir$_2$O$_7$, while the Mott insulator Sr$_2$IrO$_4$ displays more complex behavior, with the $mu$SR signal containing a single, well-resolved precession signal below $T_{rm N}=230$,K, which splits into two precession signals at low temperature following a reorientation of the spins in the ordered state.
We investigate the bilayer Ruddlesden-Popper iridate Sr$_3$Ir$_2$O$_7$ by temperature-dependent angle-resolved photoemission. We find a narrow-gap correlated insulator, with spectral features indicative of a polaronic ground state, strikingly similar to that observed previously for the parent compounds of the cuprate superconductors. We additionally observe similar behaviour for the single-layer cousin Sr$_2$IrO$_4$, indicating that strong electron-boson coupling dominates the low-energy excitations of this exotic family of materials, and providing a microscopic link between the insulating ground states of the seemingly-disparate 3d cuprates and 5d iridates.
Strong spin-orbital coupling (SOC) was found previously to lead to dramatic effects in quantum materials, such as those found in topological insulators. It was shown theoretically that local noncentrosymmetricity resulting from the rotation of RuO$_6$ octahedral in Sr$_3$Ru$_2$O$_7$ will also give rise to an effective SOCcite{SocSr327,MicroscopicnematicSr327}. In the presence of a magnetic field applied along a specific in-plane direction, the Fermi surface was predicted to undergo a reconstruction. Here we report results of our in-plane magnetoresistivity and magnetothermopower measurements on single crystals of Sr$_3$Ru$_2$O$_7$ with an electrical or a thermal current applied along specific crystalline directions and a magnetic field rotating in the $ab$ plane (Fig. 1a), showing a minimal value for field directions predicted by the local noncentrosymmetricity theory. Furthermore, the thermopower, and therefore, the electron entropy, were found to be suppressed as the field was applied perpendicular to the thermal current, which suggests that the spin and the momentum in Sr$_3$Ru$_2$O$_7$ are locked over substantial parts of the Fermi surface, likely originating from local noncentrosymmetricity as well.