Do you want to publish a course? Click here

Critical fluctuations in the spin-orbit Mott insulator Sr$_3$Ir$_2$O$_7$

142   0   0.0 ( 0 )
 Added by James Vale
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate Sr$_3$Ir$_2$O$_7$. We find that the magnetic interactions close to the N{e}el temperature $T_N$ = 283.4(2) K are three-dimensional. This contrasts with previous studies which suggest two-dimensional behaviour like Sr$_2$IrO$_4$. Violation of the Harris criterion ($d u>2$) means that weak disorder becomes relevant. This leads a rounding of the antiferromagnetic phase transition at $T_N$, and modifies the critical exponents relative to the clean system. Specifically, we determine that the critical behaviour of Sr$_3$Ir$_2$O$_7$ is representative of the diluted 3D Ising universality class.

rate research

Read More

The topochemical transformation of single crystals of Sr$_3$Ir$_2$O$_7$ into Sr$_3$Ir$_2$O$_7$F$_2$ is reported via fluorine insertion. Characterization of the newly formed Sr$_3$Ir$_2$O$_7$F$_2$ phase shows a nearly complete oxidation of Ir$^{4+}$ cations into Ir$^{5+}$ that in turn drives the system from an antiferromagnetic Mott insulator with a half-filled J$_{eff}=1/2$ band into a nonmagnetic $J=0$ band insulator. First principles calculations reveal a remarkably flat insertion energy that locally drives the fluorination process to completion. Band structure calculations support the formation of a band insulator whose charge gap relies on the strong spin-orbit coupling inherent to the Ir metal ions of this compound.
We investigate the bilayer Ruddlesden-Popper iridate Sr$_3$Ir$_2$O$_7$ by temperature-dependent angle-resolved photoemission. We find a narrow-gap correlated insulator, with spectral features indicative of a polaronic ground state, strikingly similar to that observed previously for the parent compounds of the cuprate superconductors. We additionally observe similar behaviour for the single-layer cousin Sr$_2$IrO$_4$, indicating that strong electron-boson coupling dominates the low-energy excitations of this exotic family of materials, and providing a microscopic link between the insulating ground states of the seemingly-disparate 3d cuprates and 5d iridates.
Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr$_3$Ir$_2$O$_7$ is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined $T_{AF}=280$ K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below $T^{*}approx70$ K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d $J_{eff}=1/2$ Mott phase.
149 - A. Putatunda , G. Qin , W. Ren 2020
We investigated Sr$_3$Ru$_2$O$_7$, a quantum critical metal that shows a metamagnetic quantum phase transition and electronic nematicity, through density functional calculations. These predict a ferromagnetic ground state in contrast to the experimentally observed paramagnetism, raising the question of competing magnetic states and associated fluctuations that may suppress magnetic order. We did a search to identify such low energy antiferromagnetically ordered metastable states. We find that the lowest energy antiferromagnetic state has a striped order. This corresponds to the E-type order that has been shown to be induced by Mn alloying. We also note significant transport anisotropy in this E-type ordered state. These results are discussed in relation to experimental observations.
An anapole state that breaks inversion and time reversal symmetries with preserving translation symmetry of underlying lattice has aroused great interest as a new quantum state, but only a few candidate materials have been reported. Recently, in a spin-orbit coupled Mott insulator SIR, the emergence of a possible hidden order phase with broken inversion symmetry has been suggested at $T_{Omega}$ above the N{e}el temperature by optical second harmonic generation measurements. Moreover, polarized neutron diffraction measurements revealed the broken time reversal symmetry below $T_{Omega}$, which was supported by subsequent muon spin relaxation experiments. However, the nature of this mysterious phase remains largely elusive. Here, we investigate the hidden order phase through the combined measurements of the in-plane magnetic anisotropy with exceptionally high-precision magnetic torque and the nematic susceptibility with elastoresistance. A distinct two-fold in-plane magnetic anisotropy along the [110] Ir-O-Ir bond direction sets in below $sim T_{Omega}$, providing thermodynamic evidence for a nematic phase transition with broken $C_4$ rotational symmetry. However, in contrast to the even-parity nematic transition reported in other correlated electron systems, the nematic susceptibility exhibits no divergent behavior towards $T_{Omega}$. These results provide bulk evidence for an odd-parity order parameter with broken rotational symmetry in the hidden order state. We discuss the hidden order in terms of an anapole state, in which polar toroidal moment is induced by two current loops in each IrO$_6$ octahedron of opposite chirality. Contrary to the simplest loop-current pattern previously suggested, the present results are consistent with a pattern in which the intra-unit cell loop-current flows along only one of the diagonal directions in the IrO$_4$ square.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا