No Arabic abstract
This is a review of recent developments in Monte Carlo methods in the field of ultra cold gases. For bosonic atoms in an optical lattice we discuss path integral Monte Carlo simulations with worm updates and show the excellent agreement with cold atom experiments. We also review recent progress in simulating bosonic systems with long-range interactions, disordered bosons, mixtures of bosons, and spinful bosonic systems. For repulsive fermionic systems determinantal methods at half filling are sign free, but in general no sign-free method exists. We review the developments in diagrammatic Monte Carlo for the Fermi polaron problem and the Hubbard model, and show the connection with dynamical mean-field theory. We end the review with diffusion Monte Carlo for the Stoner problem in cold gases.
The ground-state properties of two-component repulsive Fermi gases in two dimensions are investigated by means of fixed-node diffusion Monte Carlo simulations. The energy per particle is determined as a function of the intercomponent interaction strength and of the population imbalance. The regime of universality in terms of the s-wave scattering length is identified by comparing results for hard-disk and for soft-disk potentials. In the large imbalance regime, the equation of state turns out to be well described by a Landau-Pomeranchuk functional for two-dimensional polarons. To fully characterize this expansion, we determine the polarons effective mass and their coupling parameter, complementing previous studies on their chemical potential. Furthermore, we extract the magnetic susceptibility from low-imbalance data, finding only small deviations from the mean-field prediction. While the mean-field theory predicts a direct transition from a paramagnetic to a fully ferromagnetic phase, our diffusion Monte Carlo results suggest that the partially ferromagnetic phase is stable in a narrow interval of the interaction parameter. This finding calls for further analyses on the effects due to the fixed-node constraint.
We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices computed via Density Functional Theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional optical lattices, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep optical lattices. We also consider a three dimensional optical lattice at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries.
This Dissertation presents results of a thorough study of ultracold bosonic and fermionic gases in three-dimensional and quasi-one-dimensional systems. Although the analyses are carried out within various theoretical frameworks (Gross-Pitaevskii, Bethe ansatz, local density approximation, etc.) the main tool of the study is the Quantum Monte Carlo method in different modifications (variational Monte Carlo, diffusion Monte Carlo, fixed-node Monte Carlo methods). We benchmark our Monte Carlo calculations by recovering known analytical results (perturbative theories in dilute limits, exactly solvable models, etc.) and extend calculations to regimes, where the results are so far unknown. In particular we calculate the equation of state and correlation functions for gases in various geometries and with various interatomic interactions.
We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the Beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.
We present two Diffusion Monte Carlo (DMC) algorithms for systems of ultracold quantum gases featuring synthetic spin-orbit interactions. The first one is a discrete spin generalization of the T- moves spin-orbit DMC, which provides an upper bound to the fixed-phase energy. The second is a spin-integrated DMC method which recovers the fixed-phase property by avoiding the definition of the effective Hamiltonian involved in the T-moves approach. The latter is a more accurate method but it is restricted to spin-independent two-body interactions. We report a comparison between both algorithms for different systems. As a check of the efficiency of both methods, we compare the DMC energies with results obtained with other numerical methods, finding agreement between both estimation