No Arabic abstract
The ground-state properties of two-component repulsive Fermi gases in two dimensions are investigated by means of fixed-node diffusion Monte Carlo simulations. The energy per particle is determined as a function of the intercomponent interaction strength and of the population imbalance. The regime of universality in terms of the s-wave scattering length is identified by comparing results for hard-disk and for soft-disk potentials. In the large imbalance regime, the equation of state turns out to be well described by a Landau-Pomeranchuk functional for two-dimensional polarons. To fully characterize this expansion, we determine the polarons effective mass and their coupling parameter, complementing previous studies on their chemical potential. Furthermore, we extract the magnetic susceptibility from low-imbalance data, finding only small deviations from the mean-field prediction. While the mean-field theory predicts a direct transition from a paramagnetic to a fully ferromagnetic phase, our diffusion Monte Carlo results suggest that the partially ferromagnetic phase is stable in a narrow interval of the interaction parameter. This finding calls for further analyses on the effects due to the fixed-node constraint.
We study population imbalanced Fermi mixtures under quasi-two-dimensional confinement at zero temperature. Using mean-field theory and the local-density approximation, we study the ground state configuration throughout the BEC-BCS crossover. We find the trapped system to be either fully normal or to consist of a superfluid core surrounded by a normal shell, which is itself either fully or partially polarized. Upon changing the trap imbalance, the trap configuration may undergo continuous transitions between the different ground states. Finally, we argue that thermal equilibration throughout the trap will be considerably slowed down at low temperatures when a superfluid phase is present.
Pairing in a population imbalanced Fermi system in a two-dimensional optical lattice is studied using Determinant Quantum Monte Carlo (DQMC) simulations and mean-field calculations. The approximation-free numerical results show a wide range of stability of the Fulde-Ferrell-Larkin-Ovshinnikov (FFLO) phase. Contrary to claims of fragility with increased dimensionality we find that this phase is stable across wide range of values for the polarization, temperature and interaction strength. Both homogeneous and harmonically trapped systems display pairing with finite center of mass momentum, with clear signatures either in momentum space or real space, which could be observed in cold atomic gases loaded in an optical lattice. We also use the harmonic level basis in the confined system and find that pairs can form between particles occupying different levels which can be seen as the analog of the finite center of mass momentum pairing in the translationally invariant case. Finally, we perform mean field calculations for the uniform and confined systems and show the results to be in good agreement with QMC. This leads to a simple picture of the different pairing mechanisms, depending on the filling and confining potential.
This is a review of recent developments in Monte Carlo methods in the field of ultra cold gases. For bosonic atoms in an optical lattice we discuss path integral Monte Carlo simulations with worm updates and show the excellent agreement with cold atom experiments. We also review recent progress in simulating bosonic systems with long-range interactions, disordered bosons, mixtures of bosons, and spinful bosonic systems. For repulsive fermionic systems determinantal methods at half filling are sign free, but in general no sign-free method exists. We review the developments in diagrammatic Monte Carlo for the Fermi polaron problem and the Hubbard model, and show the connection with dynamical mean-field theory. We end the review with diffusion Monte Carlo for the Stoner problem in cold gases.
We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices computed via Density Functional Theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional optical lattices, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep optical lattices. We also consider a three dimensional optical lattice at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries.
We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional (1D) optical lattice, using a pairing fluctuation theory. We show that, besides widespread pseudogap phenomena and intermediate temperature superfluidity, the superfluid phase is readily destroyed except in a limited region of the parameter space. We find a new mechanism for pair hopping, assisted by the excessive majority fermions, in the presence of continuum-lattice mixing, which leads to an unusual constant BEC asymptote for $T_c$ that is independent of pairing strength. In result, on the BEC side of unitarity, superfluidity, when it exists, may be strongly enhanced by population imbalance.