Do you want to publish a course? Click here

Coherent detection of orbital angular momentum in radio

118   0   0.0 ( 0 )
 Added by Brett Isham
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM can be generated and coherently detected using ordinary electric dipole antennas. The results presented here could pave the way for novel radio OAM applications in technology and science, including radio communication, passive remote sensing, and new types of active (continuous or pulsed transmission) electromagnetic measurements.



rate research

Read More

A quasi-continuous composite perfect electric conductor-perfect magnetic conductor metasurface and a systematic metasurface design process are proposed for the orbital angular momentum (OAM) generation. The metasurfaces reflect the incident left circularly polarized (LCP)/right circularly polarized (RCP) plane wave to RCP/LCP vortex beams carrying OAM at normal or oblique direction. Unlike conventional metasurfaces that are composed of discrete scatterers, the scatterers on the proposed metasurface form a quasi-continuous pattern. The patterning of the metasurface is calculated through grating vectors, and no optimization of single scatterer is required. Furthermore, the distortions from local-response discontinuity of discrete scatterers are avoided. This letter provides great convenience to high-quality OAM generation.
Electromagnetic waves with an azimuthal phase shift are known to have a well defined orbital angular momentum. Different methods that allow for the detection of the angular momentum are proposed. For some, we discuss the required experimental setup and explore the range of applicability.
We present an optomechanical device designed to allow optical transduction of orbital angular momentum of light. An optically induced twist imparted on the device by light is detected using an integrated cavity optomechanical system based on a nanobeam slot-mode photonic crystal cavity. This device could allow measurement of the orbital angular momentum of light when photons are absorbed by the mechanical element, or detection of the presence of photons when they are scattered into new orbital angular momentum states by a sub-wavelength grating patterned on the device. Such a system allows detection of a $l = 1$ orbital angular momentum field with an average power of $3.9times10^3$ photons modulated at the mechanical resonance frequency of the device and can be extended to higher order orbital angular momentum states.
Electromagnetic (EM) waves with helical wavefront carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and is promising for channel multiplexing in communication system. Although the OAM-carrying EM wave attracts more and more attention, the method of OAM generation at microwave frequencies still faces challenges, such as efficiency and simulation time. In this work, by using the circuit theory and equivalence principle, we build two simplified models, one for a single scatter and one for the whole metasurface to predict their EM responses. Both of the models significantly simplify the design procedure and reduce the simulation time. In this paper, we propose an ultrathin complementary metasurface that converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders and a high transmission efficiency can be achieved.
160 - A. M. Stewart 2006
A decomposition of the angular momentum of the classical electromagnetic field into orbital and spin components that is manifestly gauge invariant and general has been obtained. This is done by decomposing the electric field into its longitudinal and transverse parts by means of the Helmholtz theorem. The orbital and spin components of the angular momentum of any specified electromagnetic field can be found from this prescription.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا