Do you want to publish a course? Click here

Ab initio study of helium and hydrogen interactions in $alpha$-Fe

113   0   0.0 ( 0 )
 Added by Miguel Pruneda J.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Density Functional Theory (DFT) calculations show a weak interaction between hydrogen and helium in iron, in contrast to previous reports of a strong trapping of hydrogen at helium. The strong preference of He and H to occupy regions with low electronic density (such as vacancies) explains this discrepancy, with vacancy-He and vacancy-H binding forces concealing the repulsive interaction between He and H. Furthermore, Rate Theory simulations based on our DFT-calculated V$_n$He$_m$H$_p$ cluster energetics predict, as it is observed in some experiments, that synergetic effects could be expected between H and He in iron under irradiation.



rate research

Read More

We have investigated the initial growth of Fe on GaAs(110) by means of density functional theory. In contrast to the conventionally used (001)-surface the (110)-surface does not reconstruct. Therefore, a flat interface and small diffusion can be expected, which makes Fe/GaAs(110) a possible candidate for spintronic applications. Since experimentally, the actual quality of the interface seems to depend on the growth conditions, e.g., on the flux rate, we simulate the effect of different flux rates by different Fe coverages of the semiconductor surface. Systems with low coverages are highly diffusive. With increasing amount of Fe, i.e., higher flux rates, a flat interface becomes more stable. The magnetic structure strongly depends on the Fe coverage but no quenching of the magnetic moments is observed in our calculations.
229 - R. H. Miwa , T. B. Martins , 2007
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {it ab initio} total energy calculations.
Lanthanide-based single-ion magnetic molecules can have large magnetic hyperfine interactions as well as large magnetic anisotropy. Recent experimental studies reported tunability of these properties by changes of chemical environments or by application of external stimuli for device applications. In order to provide insight onto the origin and mechanism of such tunability, here we investigate the magnetic hyperfine and nuclear quadrupole interactions for $^{159}$Tb nucleus in TbPc$_2$ (Pc=phthalocyanine) single-molecule magnets using multireference ab-initio methods including spin-orbit interaction. Since the electronic ground and first-excited (quasi)doublets are well separated in energy, the microscopic Hamiltonian can be mapped onto an effective Hamiltonian with an electronic pseudo-spin $S=1/2$. From the ab-initio-calculated parameters, we find that the magnetic hyperfine coupling is dominated by the interaction of the Tb nuclear spin with electronic orbital angular momentum. The asymmetric $4f$-like electronic charge distribution leads to a strong nuclear quadrupole interaction with significant non-axial terms for the molecule with low symmetry. The ab-initio calculated electronic-nuclear spectrum including the magnetic hyperfine and quadrupole interactions is in excellent agreement with experiment. We further find that the non-axial quadrupole interactions significantly influence the avoided level crossings in magnetization dynamics and that the molecular distortions affect mostly the Fermi contact terms as well as the non-axial quadrupole interactions.
We present an ab initio study of dopant-dopant interactions in beryllium-doped InGaAs. We consider defect formation energies of various interstitial and substitutional defects and their combinations. We find that all substitutional-substitutional interactions can be neglected. On the other hand, interactions involving an interstitial defect are significant. Specially, interstitial Be is stabilized by about 0.9/1.0 eV in the presence of one/two BeGa substitutionals. Ga interstitial is also substantially stabilized by Be interstitials. Two Be interstitials can form a metastable Be-Be-Ga complex with a dissociation energy of 0.26 eV/Be. Therefore, interstitial defects and defect-defect interactions should be considered in accurate models of Be doped InGaAs. We suggest that In and Ga should be treated as separate atoms and not lumped into a single effective group III element, as has been done before. We identified dopant-centred states which indicate the presence of other charge states at finite temperatures, specifically, the presence of Beint+1 (as opposed to Beint+2 at 0K).
Electron-phonon ($e$-ph) interactions are pervasive in condensed matter, governing phenomena such as transport, superconductivity, charge-density waves, polarons and metal-insulator transitions. First-principles approaches enable accurate calculations of $e$-ph interactions in a wide range of solids. However, they remain an open challenge in correlated electron systems (CES), where density functional theory often fails to describe the ground state. Therefore reliable $e$-ph calculations remain out of reach for many transition metal oxides, high-temperature superconductors, Mott insulators, planetary materials and multiferroics. Here we show first-principles calculations of $e$-ph interactions in CES, using the framework of Hubbard-corrected density functional theory (DFT+$U$ ) and its linear response extension (DFPT+$U$), which can describe the electronic structure and lattice dynamics of many CES. We showcase the accuracy of this approach for a prototypical Mott system, CoO, carrying out a detailed investigation of its $e$-ph interactions and electron spectral functions. While standard DFPT gives unphysically divergent and short-ranged $e$-ph interactions, DFPT+$U$ is shown to remove the divergences and properly account for the long-range Frohlich interaction, allowing us to model polaron effects in a Mott insulator. Our work establishes a broadly applicable and affordable approach for quantitative studies of e-ph interactions in CES, a novel theoretical tool to interpret experiments in this broad class of materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا