Do you want to publish a course? Click here

The Mass of the Planet-hosting Giant Star Beta Geminorum Determined from its p-mode Oscillation Spectrum

272   0   0.0 ( 0 )
 Added by Artie Hatzes
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use precise radial velocity measurements and photometric data to derive the frequency spacing of the p-mode oscillation spectrum of the planet-hosting star Beta Gem. This spacing along with the interferometric radius for this star is used to derive an accurate stellar mass. A long time series of over 60 hours of precise stellar radial velocity measurements of Beta Gem were taken with an iodine absorption cell and the echelle spectrograph mounted on the 2m Alfred Jensch Telescope. Complementary photometric data for this star were also taken with the MOST microsatellite spanning 3.6 d. A Fourier analysis of the radial velocity data reveals the presence of up to 17 significant pulsation modes in the frequency interval 10-250 micro-Hz. Most of these fall on a grid of equally-spaced frequencies having a separation of 7.14 +/- 0.12 micro-Hz. An analysis of 3.6 days of high precision photometry taken with the MOST space telescope shows the presence of up to 16 modes, six of which are consistent with modes found in the spectral (radial velocity) data. This frequency spacing is consistent with high overtone radial pulsations; however, until the pulsation modes are identified we cannot be sure if some of these are nonradial modes or even mixed modes. The radial velocity frequency spacing along with angular diameter measurements of Beta Gem via interferometry results in a stellar mass of M = 1.91 +/- 0.09 solar masses. This value confirms the intermediate mass of the star determined using stellar evolutionary tracks. Beta Gem is confirmed to be an intermediate mass star. Stellar pulsations in giant stars along with interferometric radius measurements can provide accurate determinations of the stellar mass of planet hosting giant stars. These can also be used to calibrate stellar evolutionary tracks.



rate research

Read More

394 - Francois Bouchy 2005
We present HARPS spectroscopy of mu Arae (HD160691) performed for studying the origin of the metallicity excess in this planet-hosting stars. The asteroseismologic campaign led to the previously reported discovery of a 14 earth mass planetary companion (Santos et al. 2004). The present analysis reinforces this interpretation by excluding other possible processes for explaining the observed Doppler variation and leads to the identification of up to 43 p-mode oscillations with l=0-3, frequencies in the range 1.3-2.5 mHz and amplitudes in the range 10-40 cm/s.
HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) program, we present a 2-year monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely June-July 2013, August 2013, September 2013, September 2014, and July 2015, using Zeeman-Doppler Imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally-dominated field. Using previously published data of Moutou et al. 2007 and Fares et al. 2010, we are able to study the evolution of the magnetic field over 9 years, one of the longest monitoring campaign for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the Potential Field Source Surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multi-wavelength observations to characterise exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multi-wavelength observations.
The space experiment CoRoT has recently detected a transiting hot Jupiter in orbit around a moderately active F-type main-sequence star (CoRoT-Exo-4a). This planetary system is of particular interest because it has an orbital period of 9.202 days, the second longest one among the transiting planets known to date. We study the surface rotation and the activity of the host star during an uninterrupted sequence of optical observations of 58 days. Our approach is based on a maximum entropy spot modelling technique extensively tested by modelling the variation of the total solar irradiance. It assumes that stellar active regions consist of cool spots and bright faculae, analogous to sunspots and solar photospheric faculae, whose visibility is modulated by stellar rotation. The modelling of the light curve of CoRoT-Exo-4a reveals three main active longitudes with lifetimes between about 30 and 60 days that rotate quasi-synchronously with the orbital motion of the planet. The different rotation rates of the active longitudes are interpreted in terms of surface differential rotation and a lower limit of 0.057 pm 0.015 is derived for its relative amplitude. The enhancement of activity observed close to the subplanetary longitude suggests a magnetic star-planet interaction, although the short duration of the time series prevents us from drawing definite conclusions.
120 - A. Moor , P. Abraham , A. Kospal 2013
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {ss} Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ~6.0x5.4 arcsec (540x490 AU) and disk inclination of ~25 degree. Assuming the same inclination for the planet candidates orbit, its re-projected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modelling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks co-exist.
This article aims to measure the age of planet-hosting stars (SWP) through stellar tracks and isochrones computed with the textsl{PA}dova & Ttextsl{R}ieste textsl{S}tellar textsl{E}volutionary textsl{C}ode (PARSEC). We developed algorithms based on two different techniques for determining the ages of field stars: emph{isochrone placement} and emph{Bayesian estimation}. Their application to a synthetic sample of coeval stars shows the intrinsic limits of each method. For instance, the Bayesian computation of the modal age tends to select the extreme age values in the isochrones grid. Therefore, we used the isochrone placement technique to measure the ages of 317 SWP. We found that $sim6%$ of SWP have ages lower than 0.5 Gyr. The age distribution peaks in the interval [1.5, 2) Gyr, then it decreases. However, $sim7%$ of the stars are older than 11 Gyr. The Sun turns out to be a common star that hosts planets, when considering its evolutionary stage. Our SWP age distribution is less peaked and slightly shifted towards lower ages if compared with ages in the literature and based on the isochrone fit. In particular, there are no ages below 0.5 Gyr in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا