No Arabic abstract
We present HARPS spectroscopy of mu Arae (HD160691) performed for studying the origin of the metallicity excess in this planet-hosting stars. The asteroseismologic campaign led to the previously reported discovery of a 14 earth mass planetary companion (Santos et al. 2004). The present analysis reinforces this interpretation by excluding other possible processes for explaining the observed Doppler variation and leads to the identification of up to 43 p-mode oscillations with l=0-3, frequencies in the range 1.3-2.5 mHz and amplitudes in the range 10-40 cm/s.
HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) program, we present a 2-year monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely June-July 2013, August 2013, September 2013, September 2014, and July 2015, using Zeeman-Doppler Imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally-dominated field. Using previously published data of Moutou et al. 2007 and Fares et al. 2010, we are able to study the evolution of the magnetic field over 9 years, one of the longest monitoring campaign for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the Potential Field Source Surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multi-wavelength observations to characterise exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multi-wavelength observations.
We have obtained new spectropolarimetric observations of the planet-hosting star tauBootis, using the ESPaDOnS and NARVAL spectropolarimeters at the Canada-France-Hawaii Telescope and Telescope Bernard-Lyot. With this data set, we are able to confirm the presence of a magnetic field at the surface of tauBoo and map its large-scale structure over the whole star. The overall polarity of the magnetic field has reversed with respect to our previous observation (obtained a year before), strongly suggesting that tauBoo is undergoing magnetic cycles similar to those of the Sun. This is the first time that a global magnetic polarity switch is observed in a star other than the Sun; we speculate that the magnetic cycle period of tauBoo is much shorter than that of the Sun. Our new data also allow us to confirm the presence of differential rotation from the latitudinal shearing that the magnetic structure is undergoing. The differential rotation surface shear that tauBoo experiences is found to be 6 to 10 times larger than that of the Sun. We propose that the short magnetic cycle period is due to the strong level of differential rotation. With a rotation period of 3.0 and 3.9 d at the equator and pole respectively, tauBoo appears as the first planet-hosting star whose rotation (at intermediate latitudes) is synchronised with the orbital motion of its giant planet (period 3.3 d). Assuming that this synchronisation is not coincidental, it suggests that the tidal effects induced by the giant planet can be strong enough to force the thin convective enveloppe (though not the whole star) into corotation and thus to play a role in the activity cycle of tauBoo.
We use precise radial velocity measurements and photometric data to derive the frequency spacing of the p-mode oscillation spectrum of the planet-hosting star Beta Gem. This spacing along with the interferometric radius for this star is used to derive an accurate stellar mass. A long time series of over 60 hours of precise stellar radial velocity measurements of Beta Gem were taken with an iodine absorption cell and the echelle spectrograph mounted on the 2m Alfred Jensch Telescope. Complementary photometric data for this star were also taken with the MOST microsatellite spanning 3.6 d. A Fourier analysis of the radial velocity data reveals the presence of up to 17 significant pulsation modes in the frequency interval 10-250 micro-Hz. Most of these fall on a grid of equally-spaced frequencies having a separation of 7.14 +/- 0.12 micro-Hz. An analysis of 3.6 days of high precision photometry taken with the MOST space telescope shows the presence of up to 16 modes, six of which are consistent with modes found in the spectral (radial velocity) data. This frequency spacing is consistent with high overtone radial pulsations; however, until the pulsation modes are identified we cannot be sure if some of these are nonradial modes or even mixed modes. The radial velocity frequency spacing along with angular diameter measurements of Beta Gem via interferometry results in a stellar mass of M = 1.91 +/- 0.09 solar masses. This value confirms the intermediate mass of the star determined using stellar evolutionary tracks. Beta Gem is confirmed to be an intermediate mass star. Stellar pulsations in giant stars along with interferometric radius measurements can provide accurate determinations of the stellar mass of planet hosting giant stars. These can also be used to calibrate stellar evolutionary tracks.
The Transiting Exoplanet Survey Satellite (TESS) is observing bright known planet-host stars across almost the entire sky. These stars have been subject to extensive ground-based observations, providing a large number of radial velocity (RV) measurements. In this work we use the new TESS photometric observations to characterize the star $lambda^2$ Fornacis, and following this to update the parameters of the orbiting planet $lambda^2$ For b. We measure the p-mode oscillation frequencies in $lambda^2$ For, and in combination with non-seismic parameters estimate the stellar fundamental properties using stellar models. Using the revised stellar properties and a time series of archival RV data from the UCLES, HIRES and HARPS instruments spanning almost 20 years, we refit the orbit of $lambda^2$ For b and search the RV residuals for remaining variability. We find that $lambda^2$ For has a mass of $1.16pm0.03$M$_odot$ and a radius of $1.63pm0.04$R$_odot$, with an age of $6.3pm0.9$Gyr. This and the updated RV measurements suggest a mass of $lambda^2$ For b of $16.8^{+1.2}_{-1.3}$M$_oplus$, which is $sim5$M$_oplus$ less than literature estimates. We also detect a periodicity at 33 days in the RV measurements, which is likely due to the rotation of the host star. While previous literature estimates of the properties of $lambda^2$ are ambiguous, the asteroseismic measurements place the star firmly at the early stage of its subgiant evolutionary phase. Typically only short time series of photometric data are available from TESS, but by using asteroseismology it is still possible to provide tight constraints on the properties of bright stars that until now have only been observed from the ground. This prompts a reexamination of archival RV data from the past few decades to update the characteristics of the planet hosting systems observed by TESS for which asteroseismology is possible.
We present a line-by-line differential analysis of a sample of 16 planet hosting stars and 68 comparison stars using high resolution, high signal-to-noise ratio spectra gathered using Keck. We obtained accurate stellar parameters and high-precision relative chemical abundances with average uncertainties in teff, logg, [Fe/H] and [X/H] of 15 K, 0.034 [cgs], 0.012 dex and 0.025 dex, respectively. For each planet host, we identify a set of comparison stars and examine the abundance differences (corrected for Galactic chemical evolution effect) as a function of the dust condensation temperature, tcond, of the individual elements. While we confirm that the Sun exhibits a negative trend between abundance and tcond, we also confirm that the remaining planet hosts exhibit a variety of abundance $-$ tcond trends with no clear dependence upon age, metallicity or teff. The diversity in the chemical compositions of planet hosting stars relative to their comparison stars could reflect the range of possible planet-induced effects present in these planet hosts, from the sequestration of rocky material (refractory poor), to the possible ingestion of planets (refractory rich). Other possible explanations include differences in the timescale, efficiency and degree of planet formation or inhomogeneous chemical evolution. Although we do not find an unambiguous chemical signature of planet formation among our sample, the high-precision chemical abundances of the host stars are essential for constraining the composition and structure of their exoplanets.