Do you want to publish a course? Click here

Short-Term Variability of PKS1510-089

145   0   0.0 ( 0 )
 Added by Kenta Fujisawa
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We searched a short-term radio variability in an active galactic nucleus PKS 1510-089. A daily flux monitoring for 143 days at 8.4 GHz was performed, and VLBI observations at 8.4, 22, and 43 GHz were carried out 4 times during the flux monitoring period. As a result, variability with time scale of 20 to 30 days was detected. The variation patterns were well alike on three frequencies, moreover those at 22 and 43 GHz were synchronized. These properties support that this short-term variability is an intrinsic one. The Doppler factor estimated from the variability time scale is 47. Since the Doppler factor is not extraordinary large for AGN, such intrinsic variability with time scale less than 30 days would exist in other AGNs.



rate research

Read More

Here we present a new approach for constraining luminous blazars, incorporating fully time-dependent and self-consistent modeling of bright gamma-ray flares of PKS1510-089 resolved with Fermi-LAT, in the framework of the internal shock scenario. The results of our modeling imply the location of the gamma-ray flaring zone outside of the broad-line region, namely around 0.3pc from the core for a free-expanding jet with the opening angle Gamma, theta_mathrm{jet} simeq 1 (where Gamma is the jet bulk Lorentz factor), up to simeq 3pc for a collimated outflow with Gamma, theta_mathrm{jet} simeq 0.1. Moreover, under the Gamma, theta_mathrm{jet} simeq 1 condition, our modeling indicates the maximum efficiency of the jet production during the flares, with the total jet energy flux strongly dominated by protons and exceeding the available accretion power in the source. This is in contrast to the quiescence states of the blazar, characterized by lower jet kinetic power and an approximate energy equipartition between different plasma constituents. We demostrate how strictly simultaneous observations of flaring PKS1510-089 at optical, X-ray, and GeV photon energies on hourly timescales, augmented by extensive simulations as presented in this paper, may help to impose further precise constraints on the magnetization and opening angle of the emitting region. Our detailed modeling implies in addition that a non-uniformity of the Doppler factor across the jet, caused by the radial expansion of the outflow, may lead to a pronounced time distortion in the observed gamma-ray light curves, resulting in particular in asymmetric flux profiles with substantially extended decay phases.
We present a detailed analysis of a recent $500$ ks net exposure textit{Suzaku} observation, carried out in 2013, of the nearby ($z=0.184$) luminous (L$_{rm bol}sim10^{47}$ erg s$^{-1}$) quasar PDS 456 in which the X-ray flux was unusually low. The short term X-ray spectral variability has been interpreted in terms of variable absorption and/or intrinsic continuum changes. In the former scenario, the spectral variability is due to variable covering factors of two regions of partially covering absorbers. We find that these absorbers are characterised by an outflow velocity comparable to that of the highly ionised wind, i.e. $sim0.25$ c, at the $99.9%$ $(3.26sigma)$ confidence level. This suggests that the partially absorbing clouds may be the denser clumpy part of the inhomogeneous wind. Following an obscuration event we obtained a direct estimate of the size of the X-ray emitting region, to be not larger than $20~R_{rm g}$ in PDS 456.
Context. Plasketts star (HD47129) is a very massive O-star binary in a post Roche-lobe overflow stage. CoRoT observations of this system revealed photometric variability with a number of frequencies. Aims. The aim of this paper is to characterize the variations in spectroscopy and investigate their origin. Methods. To sample its short-term variability, HD47129 was intensively monitored during two spectroscopic campaigns of six nights each. The spectra were disentangled and Fourier analyses were performed to determine possible periodicities and to investigate the wavelength dependence of the phase constant and the amplitude of the periodicities. Results. Complex line profile variations are observed. Frequencies near 1.65, 0.82, and 0.37 d^-1 are detected consistently in the He i 4471, He ii 4542, and N iii 4510-4518 lines. These frequencies are consistent with those of the strongest signals detected in photometry. The possibilities that these variations stem from pulsations, a recently detected magnetic field or tidal interactions are discussed. Conclusions. Whilst all three scenarios have their strengths, none of them can currently account for all the observed properties of the line profile variations.
Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of the largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
We present the first results from a study of TESS Sector 1 and 2 light curves for eight evolved massive stars in the LMC: six yellow supergiants (YSGs) and two luminous blue variables (LBVs), including S Doradus. We use an iterative prewhitening procedure to characterize the short-timescale variability in all eight stars. The periodogram of one of the YSGs, HD 269953, displays multiple strong peaks at higher frequencies than its fellows. While the field surrounding HD 269953 is quite crowded, it is the brightest star in the region, and has infrared colors indicating it is dusty. We suggest HD 269953 may be in a post-red supergiant evolutionary phase. We find a signal with a period of $sim5$ days for the LBV HD 269582. The periodogram of S Doradus shows a complicated structure, with peaks below frequencies of 1.5 cycles per day. We fit the shape of the background noise of all eight light curves, and find a red noise component in all of them. However, the power law slope of the red noise and the timescale over which coherent structures arise changes from star to star. Our results highlight the potential for studying evolved massive stars with TESS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا