Do you want to publish a course? Click here

Short Term Variability of Evolved Massive Stars with TESS

185   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first results from a study of TESS Sector 1 and 2 light curves for eight evolved massive stars in the LMC: six yellow supergiants (YSGs) and two luminous blue variables (LBVs), including S Doradus. We use an iterative prewhitening procedure to characterize the short-timescale variability in all eight stars. The periodogram of one of the YSGs, HD 269953, displays multiple strong peaks at higher frequencies than its fellows. While the field surrounding HD 269953 is quite crowded, it is the brightest star in the region, and has infrared colors indicating it is dusty. We suggest HD 269953 may be in a post-red supergiant evolutionary phase. We find a signal with a period of $sim5$ days for the LBV HD 269582. The periodogram of S Doradus shows a complicated structure, with peaks below frequencies of 1.5 cycles per day. We fit the shape of the background noise of all eight light curves, and find a red noise component in all of them. However, the power law slope of the red noise and the timescale over which coherent structures arise changes from star to star. Our results highlight the potential for studying evolved massive stars with TESS.



rate research

Read More

Massive stars briefly pass through the yellow supergiant (YSG) phase as they evolve redward across the HR diagram and expand into red supergiants (RSGs). Higher-mass stars pass through the YSG phase again as they evolve blueward after experiencing significant RSG mass loss. These post-RSG objects offer us a tantalizing glimpse into which stars end their lives as RSGs, and why. One telltale sign of a post-RSG object may be an instability to pulsations, depending on the stars interior structure. Here we report the discovery of five YSGs with pulsation periods faster than 1 day, found in a sample of 76 cool supergiants observed by tess at two-minute cadence. These pulsating YSGs are concentrated in a HR diagram region not previously associated with pulsations; we conclude that this is a genuine new class of pulsating star, Fast Yellow Pulsating Supergiants (FYPS). For each FYPS, we extract frequencies via iterative prewhitening and conduct a time-frequency analysis. One FYPS has an extracted frequency that is split into a triplet, and the amplitude of that peak is modulated on the same timescale as the frequency spacing of the triplet; neither rotation nor binary effects are likely culprits. We discuss the evolutionary status of FYPS and conclude that they are candidate post-RSGs. All stars in our sample also show the same stochastic low-frequency variability (SLFV) found in hot OB stars and attributed to internal gravity waves. Finally, we find four $alpha$ Cygni variables in our sample, of which three are newly discovered.
In photometry of $gamma$ Cas (B0.5 IVe) from the SMEI and BRITE-Constellation satellites, indications of low-order non-radial pulsation have recently been found, which would establish an important commonality with the class of classical Be stars at large. New photometry with the TESS satellite has detected three frequency groups near 1.0 ($g1$), 2.4 ($g2$), and 5.1 ($g3$) d$^{-1}$, respectively. Some individual frequencies are nearly harmonics or combination frequencies but not exactly so. Frequency groups are known from roughly three quarters of all classical Be stars and also from pulsations of $beta$ Cep, SPB, and $gamma$ Dor stars and, therefore, firmly establish $gamma$ Cas as a non-radial pulsator. The total power in each frequency group is variable. An isolated feature exists at 7.57 d$^{-1}$ and, together with the strongest peaks in the second and third groups ordered by increasing frequency ($g2$ and $g3$), is the only one detected in all three TESS sectors. The former long-term 0.82 d$^{-1}$ variability would fall into $g1$ and has not returned at a significant level, questioning its attribution to rotational modulation. Low-frequency stochastic variability is a dominant feature of the TESS light curve, possibly caused by internal gravity waves excited at the core-envelope interface. These are known to be efficient at transporting angular momentum outward, and may also drive the oscillations that constitute $g1$ and $g2$. The hard X-ray flux of $gamma$ Cas is the only remaining major property that distinguishes this star from the class of classical Be stars.
We present the results of the short-term constancy monitoring of candidate Gaia Spectrophotometric Standard Stars (SPSS). We obtained time series of typically 1.24 hour - with sampling periods from 1-3 min to a few hours, depending on the case - to monitor the constancy of our candidate SPSS down to 10 mmag, as required for the calibration of Gaia photometric data. We monitored 162 out of a total of 212 SPSS candidates. The observing campaign started in 2006 and finished in 2015, using 143 observing nights on nine different instruments covering both hemispheres. Using differential photometry techniques, we built light curves with a typical precision of 4 mmag, depending on the data quality. As a result of our constancy assessment, 150 SPSS candidates were validated against short term variability, and only 12 were rejected because of variability including some widely used flux standards such as BD+174708, SA 105-448, 1740346, and HD 37725.
Context. Plasketts star (HD47129) is a very massive O-star binary in a post Roche-lobe overflow stage. CoRoT observations of this system revealed photometric variability with a number of frequencies. Aims. The aim of this paper is to characterize the variations in spectroscopy and investigate their origin. Methods. To sample its short-term variability, HD47129 was intensively monitored during two spectroscopic campaigns of six nights each. The spectra were disentangled and Fourier analyses were performed to determine possible periodicities and to investigate the wavelength dependence of the phase constant and the amplitude of the periodicities. Results. Complex line profile variations are observed. Frequencies near 1.65, 0.82, and 0.37 d^-1 are detected consistently in the He i 4471, He ii 4542, and N iii 4510-4518 lines. These frequencies are consistent with those of the strongest signals detected in photometry. The possibilities that these variations stem from pulsations, a recently detected magnetic field or tidal interactions are discussed. Conclusions. Whilst all three scenarios have their strengths, none of them can currently account for all the observed properties of the line profile variations.
Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fibre-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا