Do you want to publish a course? Click here

Self-gravitating equilibrium models of dwarf galaxies and the minimum mass for star formation

385   0   0.0 ( 0 )
 Added by E. I. Vorobyov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a series of model galaxies in rotational equilibrium consisting of gas, stars, and a fixed dark matter (DM) halo and study how these equilibrium systems depend on the mass and form of the DM halo, gas temperature, non-thermal and rotation support against gravity, and also on the redshift of galaxy formation. For every model galaxy we find the minimum gas mass M_g^min required to achieve a state in which star formation (SF) is allowed according to contemporary SF criteria. The obtained M_g^min--M_DM relations are compared against the baryon-to-DM mass relation M_b--M_DM inferred from the LambdaCDM theory and WMAP4 data. Our aim is to construct realistic initial models of dwarf galaxies (DGs), which take into account the gas self-gravity and can be used as a basis to study the dynamical and chemical evolution of DGs. Rotating equilibria are found by solving numerically the steady-state momentum equation for the gas component in the combined gravitational potential of gas, stars, and DM halo using a forward substitution procedure. We find that for a given M_DM the value of M_g^min depends crucially on the gas temperature T_g, gas spin parameter alpha, degree of non-thermal support sigma_eff, and somewhat on the redshift for galaxy formation z_gf. Depending on the actual values of T_g, alpha, sigma_eff, and z_gf, model galaxies may have M_g^min that are either greater or smaller than M_b. Galaxies with M_DM ga 10^9 M_sun are usually characterized by M_g^min la M_b, implying that SF in such objects is a natural outcome as the required gas mass is consistent with what is available according to the LambdaCDM theory. On the other hand, models with M_DM la 10^9 M_sun are often characterized by M_g^min >> M_b, implying that they need much more gas than available to achieve a state in which SF is allowed. Abridged.



rate research

Read More

We present a model of star formation in self-gravitating turbulent gas. We treat the turbulent velocity $v_T$ as a dynamical variable, and assume that it is adiabatically heated by the collapse. The theory predicts the run of density, infall velocity, and turbulent velocity, and the rate of star formation in compact massive gas clouds. The turbulent pressure is dynamically important at all radii, a result of the adiabatic heating. The system evolves toward a coherent spatial structure with a fixed run of density, $rho(r,t)torho(r)$; mass flows through this structure onto the central star or star cluster. We define the sphere of influence of the accreted matter by $m_*=M_g(r_*)$, where $m_*$ is the stellar plus disk mass in the nascent star cluster and $M_g(r)$ is the gas mass inside radius $r$. The density is given by a broken power law with a slope $-1.5$ inside $r_*$ and $sim -1.6$ to $-1.8$ outside $r_*$. Both $v_T$ and the infall velocity $|u_r|$ decrease with decreasing $r$ for $r>r_*$; $v_T(r)sim r^p$, the size-linewidth relation, with $papprox0.2-0.3$, explaining the observation that Larsons Law is altered in massive star forming regions. The infall velocity is generally smaller than the turbulent velocity at $r>r_*$. For $r<r_*$, the infall and turbulent velocities are again similar, and both increase with decreasing $r$ as $r^{-1/2}$, with a magnitude about half of the free-fall velocity. The accreted (stellar) mass grows super-linearly with time, $dot M_*=phi M_{rm cl}(t/tau_{ff})^2$, with $phi$ a dimensionless number somewhat less than unity, $M_{rm cl}$ the clump mass and $tau_{ff}$ the free-fall time of the clump. We suggest that small values of p can be used as a tracer of convergent collapsing flows.
153 - J.-M. Wang , P. Du , J. A. Baldwin 2012
(abridged) We study the consequence of star formation (SF) in an self-gravity dominated accretion disk in quasars. The warm skins of the SF disk are governed by the radiation from the inner part of the accretion disk to form Compton atmosphere (CAS). The CAS are undergoing four phases to form broad line regions. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of BLRs. Geometry and dynamics of BLRs can be self-consistently derived from the thermal instability of the CAS during phases II and III by linear analysis. The metallicity gradient of SF disk gives rise to different properties of clouds from outer to inner part of BLRs. We find that clouds have column density N_H < 10^22cm^{-2} in the metal-rich regions whereas they have N_H > 10^22 cm^{-2} in the metal-poor regions. The metal-rich clouds compose the high ionization line (HIL) regions whereas the metal-poor clouds are in low ionization line (LIL) regions. Metal-rich clouds in HIL regions will be blown away by radiation pressure, forming the observed outflows. The LIL regions are episodic due to the mass cycle of clouds with the CAS in response to continuous injection by the SF disk, giving rise to different types of AGNs. Based on SDSS quasar spectra, we identify a spectral sequence in light of emission line equivalent width from Phase I to IV. A key phase in the episodic appearance of the BLRs is bright type II AGNs with no or only weak BLRs. We discuss observational implications and tests of the theoretical predictions of this model.
264 - M. Kuhlen , M. Krumholz , P. Madau 2011
We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h < ~10^10 M_sun) at z>4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with supernova feedback. We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z=4-8 and find reasonable agreement between the two.
421 - Sophia Lianou 2012
[abridged] We study the resolved stellar populations and derive the SFH of the SDIG, a gas-rich dwarf galaxy member of the NGC7793 subgroup in the Sculptor group. We construct a CMD using archival HST observations and examine its stellar content. We derive its SFH using a maximum-likelihood fit to the CMD. The CMD shows that SDIG contains stars from 10Myr to several Gyr old, as revealed from the MS, BL, luminous AGB, and RGB stars. The young stars with ages less than ~250Myr show a spatial distribution confined to its central regions, and additionally the young MS stars exhibit an off-center density peak. The intermediate-age and older stars are more spatially extended. SDIG is dominated by intermediate-age stars with an average age of 6.4Gyr. The average metallicity inferred is [M/H]approx -1.5dex. Its SFH is consistent with a constant SFR, except for ages younger than ~200Myr. The lifetime average SFR is 1.3x10^{-3} Mo/yr. More recently than 100Myr, there has been a burst of SF at a rate ~2-3 times higher than the average SFR. The inferred recent SFR from CMD modelling is higher than inferred from the Ha flux of the galaxy; we interpret this to mean that the upper end of the IMF is not being fully sampled due to the low SFR. Additionally, an observed lack of bright blue stars in the CMD could indicate a downturn in SFR on 10^7-yr timescales. A previous SF enhancement appears to have occurred between 600-1100Myr ago, with amplitude similar to the most recent 100Myr. Older bursts of similar peak SFR and duration would not be resolvable with these data. The observed enhancements in SF suggest that SDIG is able to sustain a complex SFH without the effect of interactions with its nearest massive galaxy. Integrating the SFR over the entire history of SDIG yields a total stellar mass 1.77x10^{7}Mo, and a current V-band stellar mass-to-light ratio 3.2Mo/Lo.
Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM), and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae, and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to <100K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant molecular clouds (GMCs), dense clumps, and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of SMC-like dwarfs, the Milky-Way, and z~2 clumpy disk analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt-Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold, and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally-induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1-2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا