Do you want to publish a course? Click here

The star formation history of the Sculptor Dwarf Irregular Galaxy

454   0   0.0 ( 0 )
 Added by Sophia Lianou
 Publication date 2012
  fields Physics
and research's language is English
 Authors Sophia Lianou




Ask ChatGPT about the research

[abridged] We study the resolved stellar populations and derive the SFH of the SDIG, a gas-rich dwarf galaxy member of the NGC7793 subgroup in the Sculptor group. We construct a CMD using archival HST observations and examine its stellar content. We derive its SFH using a maximum-likelihood fit to the CMD. The CMD shows that SDIG contains stars from 10Myr to several Gyr old, as revealed from the MS, BL, luminous AGB, and RGB stars. The young stars with ages less than ~250Myr show a spatial distribution confined to its central regions, and additionally the young MS stars exhibit an off-center density peak. The intermediate-age and older stars are more spatially extended. SDIG is dominated by intermediate-age stars with an average age of 6.4Gyr. The average metallicity inferred is [M/H]approx -1.5dex. Its SFH is consistent with a constant SFR, except for ages younger than ~200Myr. The lifetime average SFR is 1.3x10^{-3} Mo/yr. More recently than 100Myr, there has been a burst of SF at a rate ~2-3 times higher than the average SFR. The inferred recent SFR from CMD modelling is higher than inferred from the Ha flux of the galaxy; we interpret this to mean that the upper end of the IMF is not being fully sampled due to the low SFR. Additionally, an observed lack of bright blue stars in the CMD could indicate a downturn in SFR on 10^7-yr timescales. A previous SF enhancement appears to have occurred between 600-1100Myr ago, with amplitude similar to the most recent 100Myr. Older bursts of similar peak SFR and duration would not be resolvable with these data. The observed enhancements in SF suggest that SDIG is able to sustain a complex SFH without the effect of interactions with its nearest massive galaxy. Integrating the SFR over the entire history of SDIG yields a total stellar mass 1.77x10^{7}Mo, and a current V-band stellar mass-to-light ratio 3.2Mo/Lo.



rate research

Read More

We present the Star Formation History (SFH) and the age-metallicity relation (AMR) in three fields of the Fornax dwarf spheroidal galaxy. They sample a region spanning from the centre of the galaxy to beyond one core radius, which allows studying galactocentric gradients. In all the cases, we found stars as old as 12 Gyr, together with intermediate-age and young stellar populations. The last star formation events, as young as 1 Gyr old, are mainly located in the central region, which may indicate that the gas reservoir in the outer parts of the galaxy would have been exhausted earlier than in the centre or removed by tidal interactions. The AMR is smoothly increasing in the three analyzed regions and similar to each other, indicating that no significant metallicity gradient is apparent within and around the core radius of Fornax. No significant traces of global UV-reionization or local SNe feedback are appreciated in the early SFH of Fornax. Our study is based on FORS1@VLT photometry as deep as I~24.5 and the IAC-star/IAC-pop/MinnIAC suite of codes for the determination of the SFH in resolved stellar populations.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
Aims: We investigate the massive stellar content of the nearby dwarf irregular Wolf-Rayet galaxy IC 4662, and consider its global star forming properties in the context of other metal-poor galaxies, the SMC, IC 10 and NGC 1569. Methods: Very Large Telescope/FORS2 imaging and spectroscopy plus archival Hubble Space Telescope/ACS imaging datasets permit us to spatially identify the location, number and probable subtypes of Wolf-Rayet stars within this galaxy. We also investigate suggestions that a significant fraction of the ionizing photons of the two giant HII regions A1 and A2 lie deeply embedded within these regions. Results: Wolf-Rayet stars are associated with a number of sources within IC 4662-A1 and A2, plus a third compact HII region to the north west of A1 (A1-NW).Several sources appear to be isolated, single (or binary) luminous nitrogen sequence WR stars, while extended sources are clusters whose masses exceed the Orion Nebula Cluster by, at most, a factor of two. IC 4662 lacks optically visible young massive, compact clusters that are common in other nearby dwarf irregular galaxies. A comparison between radio and Halpha-derived ionizing fluxes of A1 and A2 suggests that 30-50% of their total Lyman continuum fluxes lie deeply embedded within these regions. Conclusions: The star formation surface density of IC 4662 is insufficient for this galaxy to qualify as a starburst galaxy, based upon its photometric radius, R_25. If instead, we were to adopt the V-band scale length R_D from Hunter & Elmegreen, IC 4662 would comfortably qualify as a starburst galaxy, since its star formation intensity would exceed 0.1 M_sun/yr/kpc^2.
291 - M. Kuhlen , M. Krumholz , P. Madau 2011
We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h < ~10^10 M_sun) at z>4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with supernova feedback. We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z=4-8 and find reasonable agreement between the two.
We present the star formation history and chemical evolution of the Sextans dSph dwarf galaxy as a function of galactocentric distance. We derive these from the $VI$ photometry of stars in the $42 times 28$ field using the SMART model developed by Yuk & Lee (2007, ApJ, 668, 876) and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that $>$84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago ($sim$ 65% of the stars formed 13 to 15 Gyr ago while $sim$ 25% formed 11 to 13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the star formation history is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11 to 13 Gyr ago. Whether blue straggler stars are interpreted as intermediate age main sequence stars affects conclusions regarding the star formation history for times 4 to 8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H]=--1.6 in the central region and to [Fe/H]=--1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the star formation history, which self-consistently drives the chemical enrichment history.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا