Do you want to publish a course? Click here

Magnetodielectric effect of Graphene-PVA Nanocomposites

159   0   0.0 ( 0 )
 Added by Sreemanta Mitra
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene-Polyvinyl alcohol (PVA) nanocomposite films with thickness $120 mu m$ were synthesized by solidification of PVA in a solution with dispersed graphene nanosheets. Electrical conductivity data were explained as arising due to hopping of carriers between localized states formed at the graphene-PVA interface. Dielectric permittivity data as a function of frequency indicated the occurrence of Debye-type relaxation mechanism. The nanocomposites showed a magnetodielectric effect with the dielectric constant changing by 1.8% as the magnetic field was increased to 1 Tesla. The effect was explained as arising due to Maxwell-Wagner polarization as applied to an inhomogeneous two-dimensional,two-component composite model. This type of nanocomposite may be suitable for applications involving nanogenerators.



rate research

Read More

Nickel nanosheets of thickness 0.6 nm were grown within the nanochannels of Na-4 mica template. The specimens show magnetodielectric effect at room temperature with a change of dielectric constant as a function of magnetic field, the electric field frequency varying from 100 to 700 kHz. A decrease of 5% in the value of dielectric constant was observed up to a field of 1.2 Tesla. This is explained by an inhomogeneous two-component composite model as theoretically proposed recently. The present approach will open up synthesis of various nanocomposites for sensor applications.
Reproducible current hysteresis is observed in graphene with a back gate structure in a two-terminal configuration. By applying a back gate bias to tune the Fermi level, an opposite sequence of switching with the different charge carriers, holes and electrons, is found. The charging and discharging effect is proposed to explain this ambipolar bistable hysteretic switching. To confirm this hypothesis, one-level transport model simulations including charging effect are performed and the results are consistent with our experimental data. Methods of improving the ON/OFF ratio of graphene resistive switching are suggested.
We investigate the photocatalytic performance of nanocomposites prepared in a one-step process by liquid-phase exfoliation of graphite in the presence of TiO$_2$ nanoparticles (NPs) at atmospheric pressure and in water, without heating or adding any surfactant, and starting from low-cost commercial reagents. The nanocomposites show enhanced photocatalytic activity, degrading up to 40$%$ more pollutants with respect to the starting TiO$_2$-NPs. In order to understand the photo-physical mechanisms underlying this enhancement, we investigate the photo-generation of reactive species (trapped holes and electrons) by ultrafast transient absorption spectroscopy. We observe an electron transfer process from TiO$_2$ to the graphite flakes within the first picoseconds of the relaxation dynamics, which causes the decrease of the charge recombination rate, and increases the efficiency of the reactive species photo-production.
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resistivity $rho_c simeq 19 kOmega mu m^2$ and carrier mobility as high as 4000 cm$^2$V$^{-1}$s$^{-1}$. By using a highly doped p-Si/SiO$_2$ substrate as back gate, we analyze the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate that low energy irradiation is detrimental on the transistor current capability, resulting in an increase of the contact resistance and a reduction of the carrier mobility even at electron doses as low as 30 $e^-/nm^2$. We also show that the irradiated devices recover by returning to their pristine state after few repeated electrical measurements.
When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons linked to magnetic flux quanta form complex composite quasipartices, which are manifested in the quantization of the Hall conductivity as rational fractions of the conductance quantum. The recent experimental discovery of an anomalous integer quantum Hall effect in graphene has opened up a new avenue in the study of correlated 2D electronic systems, in which the interacting electron wavefunctions are those of massless chiral fermions. However, due to the prevailing disorder, graphene has thus far exhibited only weak signatures of correlated electron phenomena, despite concerted experimental efforts and intense theoretical interest. Here, we report the observation of the fractional quantum Hall effect in ultraclean suspended graphene, supporting the existence of strongly correlated electron states in the presence of a magnetic field. In addition, at low carrier density graphene becomes an insulator with an energy gap tunable by magnetic field. These newly discovered quantum states offer the opportunity to study a new state of matter of strongly correlated Dirac fermions in the presence of large magnetic fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا